高中数学必修2全册同步检测:4-2-1
4-2-1同步检测
一、选择题
1.直线x-y-4=0与圆x2+y2-2x-2y-2=0的位置关系是( )
A.相交 B.相切
C.相交且过圆心 D.相离
2.(2012·安徽卷)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是( )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
3.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值是( )
A.10 B.10或-68
C.5或-34 D.-68
4.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为( )
A.(-,) B.[-,]
C. D.
5.已知直线ax-by+c=0(ax≠0)与圆x2+y2=1相切,则三条边长分别为|a|,|b|,|c|的三角形( )
A.是锐角三角形 B.是直角三角形
C.是钝角三角形 D.不存在
6.过点P(2,3)引圆x2+y2-2x+4y+4=0的切线,其方程是( )
A.x=2
B.12x-5y+9=0
C.5x-12y+26=0
D.x=2和12x-5y-9=0
7.点M在圆(x-5)2+(y-3)2=9上,点M到直线3x+4y-2=0的最短距离为( )
A.9 B.8
C.5 D.2
8.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是( )
A.3x-y-5=0 B.3x+y-7=0
C.3x-y-1=0 D.3x+y-5=0
9.已知直线x+7y=10把圆x2+y2=4分成两段弧,这两段弧长之差的绝对值等于( )
A. B.
C.π D.2π
10.设圆(x-3)2+(y+5)2=r2(r>0)上有且仅有两个点到直线4x-3y-2=0的距离等于1,则圆半径r的取值范围是( )
A.3
4 D.r>5
二、填空题
11.已知直线5x+12y+m=0与圆x2-2x+y2=0相切,则m=________.
12.(2011~2012·北京朝阳一模)过原点且倾斜角为60°的直线被圆x2+y2-4x=0所截得的弦长为________.
13.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是________.
14.(2012·江西卷)过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是________.
三、解答题
15.已知直线l:y=2x-2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所截的线段长.
16.已知圆经过点A(2,-1),圆心在直线2x+y=0上且与直线x-y-1=0相切,求圆的方程.
17.在直线x-y+2=0上求一点P,使P到圆x2+y2=1的切线长最短,并求出此时切线的长.
18.已知圆x2+y2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.
详解答案
1[答案] D
[解析] 圆的方程为(x-1)2+(y-1)2=4,
则圆心到直线的距离d==2>2,
∴直线与圆相离.
2[答案] C
[解析] 圆(x-a)2+y2=2的圆心C(a,0)到直线x-y+1=0的距离为d
则d≤r=⇔≤⇔|a+1|≤2⇔-3≤a≤1.
3[答案] B
[解析] 由题意得圆心C(1,-2),半径r=5,圆心C到直线5x-12y+c=0的距离d=,又r2=d2+42,
所以25=+16,解得c=10或-68.
4[答案] D
[解析] 解法1:如图,BC=1,AC=2,
∴∠BAC=30°,
∴-≤k≤.
解法2:设直线l方程为y=k(x-4),则由题意知,
≤1,∴-≤k≤.
解法3:过A(4,0)的直线l可设为x=my+4,代入(x-2)2+y2=1中得:
(m2+1)y2+4my+3=0,
由Δ=16m2-12(m2+1)=4m2-12≥0得
m≤-或m≥.
∴l的斜率k=∈∪,特别地,当k=0时,显然有公共点,
∴k∈.
5[答案] B
[解析] 圆心O(0,0)到直线的距离d==1,
则a2+b2=c2,即该三角形是直角三角形.
6[答案] D
[解析] 点P在圆外,故过P必有两条切线,
∴选D.
7[答案] D
[解析] 由圆心到直线的距离d==5>3知直线与圆相离,故最短距离为d-r=5-3=2,故选D.
8[答案] A
[解析] x2+y2-2x+4y=0的圆心为(1,-2),截得弦最长的直线必过点(2,1)和圆心(1,-2)
∴直线方程为3x-y-5=0,故选A.
9[答案] D
[解析] 圆x2+y2=4的圆心为O(0,0),半径r=2,设直线x+7y=10与圆x2+y2=4交于M,N两点,则圆心O到直线x+7y=10的距离d==,过点O作OP⊥MN于P,则|MN|=2=2.在△MNO中,|MN|2+|ON|2=2r2=8=|MN|2,则∠MON=90°,这两段弧长之差的绝对值等于
=2π.
10[答案] B
[解析] 圆心C(3,-5),半径为r,圆心C到直线4x-3y-2=0的距离d==5,由于圆C上有且仅有两个点到直线4x-3y-2=0的距离等于1,则d-10).
∵圆心在直线2x+y=0上,
∴b=-2a,即圆心为C(a,-2a).
又∵圆与直线x-y-1=0相切,且过点(2,-1),
∴=r,(2-a)2+(-1+2a)2=r2,
即(3a-1)2=2[(2-a)2+(-1+2a)2],解得a=1或
a=9,∴a=1,b=-2,r=或a=9,b=-18,r=13.
故所求圆的方程为(x-1)2+(y+2)2=2或(x-9)2+(y+18)2=338.
17[解析] 设P(x0,y0),则切线长
S==
=,当x0=-时,Smin=
此时P(-,).切线长最短为.
18[解析] 设点P、Q的坐标分别为(x1,y1)、(x2,y2).
由OP⊥OQ,得kOPkOQ=-1,即·=-1,x1x2+y1y2=0.①
又(x1,y1)、(x2,y2)是方程组
的实数解,即x1,x2是方程5x2+10x+4m-27=0②的两个根,
∴x1+x2=-2,x1x2=.③
∵P、Q是在直线x+2y-3=0上,
∴y1y2=(3-x1)·(3-x2)
=[9-3(x1+x2)+x1x2].
将③代入,得y1y2=.④
将③④代入①,解得m=3.代入方程②,检验Δ>0成立,
∴m=3.