【数学】2020届一轮复习(理)人教通用版13-1-2参数方程学案
第2课时 参数方程
最新考纲
考情考向分析
1.了解参数方程,了解参数的意义.
2.能选择适当的参数写出直线、圆和椭圆的参数方程.
了解参数的意义,重点考查直线参数方程中参数的几何意义及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题形式考查,难度为中档.
1.参数方程和普通方程的互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.
(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程.
2.常见曲线的参数方程和普通方程
点的轨迹
普通方程
参数方程
直线
y-y0=tan α(x-x0)
(t为参数)
圆
x2+y2=r2
(θ为参数)
椭圆
+=1(a>b>0)
(φ为参数)
抛物线
y2=2px(p>0)
(t为参数)
概念方法微思考
1.在直线的参数方程(t为参数)中,
(1)t的几何意义是什么?
(2)如何利用t的几何意义求直线上任意两点P1,P2的距离?
提示 (1)t表示在直线上过定点P0(x0,y0)与直线上的任一点P(x,y)构成的有向线段P0P的数量.
(2)|P1P2|=|t1-t2|=.
2.圆的参数方程中参数θ的几何意义是什么?
提示 θ的几何意义为该圆的圆心角.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)参数方程中的x,y都是参数t的函数.( √ )
(2)方程(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( √ )
(3)已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为.( × )
题组二 教材改编
2.曲线(θ为参数)的对称中心( )
A.在直线y=2x上 B.在直线y=-2x上
C.在直线y=x-1上 D.在直线y=x+1上
答案 B
解析 由得
所以(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y=-2x上.
3.在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.
解 直线l的普通方程为x-y-a=0,
椭圆C的普通方程为+=1,
∴椭圆C的右顶点坐标为(3,0),若直线l过(3,0),
则3-a=0,∴a=3.
题组三 易错自纠
4.直线l的参数方程为(t为参数),求直线l的斜率.
解 将直线l的参数方程化为普通方程为
y-2=-3(x-1),因此直线l的斜率为-3.
5.设P(x,y)是曲线C:(θ为参数,θ∈[0,2π))上任意一点,求的取值范围.
解 由曲线C:(θ为参数),
得(x+2)2+y2=1,表示圆心为(-2,0),半径为1的圆.
表示的是圆上的点和原点连线的斜率,设=k,则原问题转化为y=kx和圆有交点的问题,即圆心到直线的距离d≤r,所以≤1,解得-≤k≤,
所以的取值范围为.
6.已知曲线C的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|·|PB|=1,求实数m的值.
解 (1)曲线C的极坐标方程是ρ=2cos θ,
化为ρ2=2ρcos θ,可得曲线C的直角坐标方程为x2+y2-2x=0.
直线l的参数方程是(t为参数),
消去参数t可得x=y+m,
即直线l的普通方程为y-x+m=0.
(2)把(t为参数)代入方程x2+y2=2x,
化为t2+(m-)t+m2-2m=0,①
由Δ>0,解得-1
0.
∴实数m=1±或m=1.
题型一 参数方程与普通方程的互化
1.(2018·包头调研)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以O为极点,x
轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上的所有点的横坐标缩短为原来的,再将所得到的曲线向左平移1个单位长度,得到曲线C1,求曲线C1上的点到直线l的距离的最小值.
解 (1)曲线C的直角坐标方程为x2+y2=4x,
即(x-2)2+y2=4.
直线l的普通方程为x-y+2=0.
(2)将曲线C上的所有点的横坐标缩短为原来的,
得(2x-2)2+y2=4,即(x-1)2+=1,
再将所得曲线向左平移1个单位长度,
得曲线C1:x2+=1,
则曲线C1的参数方程为(θ为参数).
设曲线C1上任一点P(cos θ,2sin θ),
则点P到直线l的距离
d=
=≥,
所以点P到直线l的距离的最小值为.
2.在《圆锥曲线论》中,阿波罗尼奥斯第一次从一个对顶圆锥(直或斜)得到所有的圆锥曲线,并命名了椭圆(ellipse)、双曲线(hyperboler)和抛物线(parabola),在这本晦涩难懂的书中有一个著名的几何问题:“在平面上给定两点A,B,设P点在同一平面上且满足=λ(λ>0且λ≠1),P点的轨迹是圆.”这个圆我们称之为“阿波罗尼奥斯圆”.已知点M与长度为3的线段OA两端点的距离之比为=,建立适当坐标系,求出M点的轨迹方程并化为参数方程.
解 由题意,以OA所在直线为x轴,过O点作OA的垂线为y轴,建立直角坐标系,
设M(x,y),则O(0,0),A(3,0).
因为=,即=,
化简得(x+1)2+y2=4,
所以点M的轨迹是以(-1,0)为圆心,2为半径的圆.
由圆的参数方程可得
思维升华 消去参数的方法一般有三种
(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.
(2)利用三角恒等式消去参数.
(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.
将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.
题型二 参数方程的应用
例1 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
解 (1)曲线C的直角坐标方程为+=1.
当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,
当cos α=0时,l的直角坐标方程为x=1.
(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①
因为曲线C截直线l所得线段的中点(1,2)在C内,
所以①有两个解,设为t1,t2,则t1+t2=0.
又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.
思维升华 (1)解决直线与椭圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与椭圆的位置关系来解决.
(2)对于形如(t为参数),当a2+b2≠1时,应先化为标准形式后才能利用t的几何意义解题.
跟踪训练1 (2017·全国Ⅰ)在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为(t为参数).
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
解 (1)曲线C的普通方程为+y2=1.
当a=-1时,直线l的普通方程为x+4y-3=0.
由
解得或
从而C与l的交点坐标是(3,0),.
(2)直线l的普通方程是x+4y-4-a=0,故C上的点(3cos θ,sin θ)到l的距离为d=.
当a≥-4时,d的最大值为.
由题设得=,所以a=8;
当a<-4时,d的最大值为.
由题设得=,
所以a=-16.
综上,a=8或a=-16.
题型三 极坐标方程和参数方程的综合应用
例2 (2017·全国Ⅲ)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)-=0,M为l3与C的交点,求M的极径.
解 (1)消去参数t,得l1的普通方程l1:y=k(x-2);
消去参数m,得l2的普通方程l2:y=(x+2).
设P(x,y),由题设得
消去k得x2-y2=4(y≠0).
所以C的普通方程为x2-y2=4(y≠0).
(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,
θ≠π).
联立得
cos θ-sin θ=2(cos θ+sin θ).
故tan θ=-,从而cos2θ=,sin2θ=.
代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,
所以交点M的极径为.
思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.
跟踪训练2 (1)(2018·湖北八校联考)已知曲线C1的极坐标方程为ρ=,C2的参数方程为(t为参数).
①将曲线C1与C2的方程化为直角坐标系下的普通方程;
②若C1与C2相交于A,B两点,求|AB|.
解 ①曲线C1的极坐标方程ρ=,即ρ2sin2θ=2ρcos θ,∴曲线C1的普通方程为y2=2x,曲线C2的参数方程为(t为参数),消去参数t,得C2的普通方程为x+y=4.
②将C2的参数方程代入C1的普通方程并化简得t2-3t=0,解得t1=0,t2=6,故|AB|=|t1-t2|=6.
(2)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.
①将曲线C的极坐标方程化为直角坐标方程;
②设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.
解 ①ρ=2cos θ变形为ρ2=2ρcos θ.(ⅰ)
将ρ2=x2+y2,ρcos θ=x代入(ⅰ)式即得曲线C的直角坐标方程为x2+y2-2x=0.(ⅱ)
②将代入(ⅱ)式,得t2+5t+18=0.
设这个方程的两个实根分别为t1,t2,则由参数t的几何意义知,|MA|·|MB|=|t1t2|=18.
1.已知在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数).
(1)求曲线C的普通方程;
(2)经过点P(平面直角坐标系xOy中的点)作直线l交曲线C于A,B两点,若P恰好为线段AB的中点,求直线l的方程.
解 (1)由曲线C的参数方程,得
所以cos2θ+sin2θ=2+y2=1,
所以曲线C的普通方程为+y2=1.
(2)设直线l的倾斜角为θ1,则直线l的参数方程为(t为参数),
代入曲线C的直角坐标方程,得(cos2θ1+4sin2θ1)t2+(2cos θ1+4sin θ1)t-2=0,
所以t1+t2=-,由题意知t1=-t2,
所以2cos θ1+4sin θ1=0,得k=-,
所以直线l的方程为x+2y-2=0.
2.在极坐标系中,圆C的极坐标方程为ρ2=4ρ(cos θ+sin θ)-3,若以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求圆C的一个参数方程;
(2)在平面直角坐标系中,P(x,y)是圆C上的动点,试求x+2y的最大值,并求出此时点P的直角坐标.
解 (1)因为ρ2=4ρ(cos θ+sin θ)-3,所以x2+y2-4x-4y+3=0,即(x-2)2+(y-2)2=5为圆C的直角坐标方程,所以圆C的一个参数方程为(φ为参数).
(2)由(1)可知点P的坐标可设为(2+cos φ,2+sin φ),则x+2y=2+cos φ+4+2sin φ=2sin φ+cos φ+6=5sin(φ+α)+6,其中cos α=,sin α=,当x+2y取最大值时,sin(φ+α)=1,φ+α=2kπ+,k∈Z,此时cos φ=cos=sin α=,
sin φ=sin=cos α=,所以x+2y的最大值为11,此时点P的直角坐标为(3,4).
3.在平面直角坐标系xOy中,已知曲线C:(θ为参数),直线l过定点(-2,2),且斜率为-.以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的直角坐标方程以及直线l的参数方程;
(2)点P在曲线C上,当θ∈时,求点P到直线l的最小距离并求点P的坐标.
解 (1)曲线C:+=1;k=tan α=-,
又sin2α+cos2α=1,解得
故直线l的参数方程为(t为参数).
(2)设点P(2cos θ,sin θ),易知直线l:x+2y-2=0,
则点P到直线l的距离为d==,
因为θ∈,则θ+∈,
当且仅当θ+=时,P到直线l的距离最小,dmin===,
此时θ=,
所以P点坐标为.
4.在平面直角坐标系xOy中,曲线C的参数方程是(θ为参数),以射线Ox为极轴建立极坐标系,直线l的极坐标方程为ρcos θ-ρsin θ-=0.
(1)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
解 (1)将曲线C的参数方程化为直角坐标方程为+=1,
因为x=ρcos θ,y=ρsin θ,
所以直线l的直角坐标方程为x-y-=0.
(2)直线l的倾斜角为,过点(,0),
所以将直线l化为参数方程为
即(t为参数),
代入+=1,得7t2+6t-6=0,
Δ=(6)2-4×7×(-6)=384>0,
设方程的两根为t1,t2,
则t1+t2=-,t1t2=-,
所以|AB|=|t1-t2|===.
5.在平面直角坐标系xOy中,已知倾斜角为α的直线l经过点A(-2,1).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为=.
(1)写出曲线C的普通方程;
(2)若直线l与曲线C有两个不同的交点M,N,求|AM|+|AN|的取值范围.
解 (1)由=,得ρ2+2ρsin θ=3.
将代入上式中,
得曲线C的普通方程为x2+y2+2y-3=0.
(2)将l的参数方程(t为参数)代入C的方程x2+y2+2y-3=0,
整理得t2-4(cos α-sin α)t+4=0.
因为直线l与曲线C有两个不同的交点,
所以Δ=42(cos α-sin α)2-42>0,
化简得cos αsin α<0.
又0≤α<π,
所以<α<π,
且cos α<0,sin α>0.
设方程的两根为t1,t2,
则t1+t2=4(cos α-sin α)<0,t1t2=4>0,
所以t1<0,t2<0,
所以|AM|+|AN|=-(t1+t2)=4(sin α-cos α)=4sin.
由<α<π,得<α-<,
所以
查看更多