- 2021-04-14 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2010中考数学试题分类汇编共28专题25勾股定理
(2010哈尔滨)1.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在 点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为 度.125 24.(2010湖北省咸宁市)如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). (1)当时,求线段的长; (2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值; (3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由. A B C D (备用图1) A B C D (备用图2) Q A B C D l M P (第24题) E 24.解:(1)过点C作于F,则四边形AFCD为矩形. Q A B C D l M P (第24题) E F ∴,. 此时,Rt△AQM∽Rt△ACF.……2分 ∴. 即,∴.……3分 (2)∵为锐角,故有两种情况: ①当时,点P与点E重合. 此时,即,∴.……5分 A B C D (备用图1) Q P E l M ②当时,如备用图1, 此时Rt△PEQ∽Rt△QMA,∴. 由(1)知,, 而, ∴. ∴. 综上所述,或.……8分(说明:未综述,不扣分) (3)为定值.……9分 当>2时,如备用图2, A B C D (备用图2) M Q R F P . 由(1)得,. ∴. ∴. ∴. ∴. ∴四边形AMQP为矩形. ∴∥.……11分 ∴△CRQ∽△CAB. ∴.……12分 (2010年眉山)7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为 A.90° B.60° C.45° D.30° 答案:C 24.全等、四边形、勾股定理(10重庆潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4. (1)证明:△ABE≌△DAF; (2)若∠AGB=30°,求EF的长. 解:(1)∵四边形ABCD是正方形,∴AB=AD。 在△ABE和△DAF中, ∴△ABE≌△DAF。 (2)∵四边形ABCD是正方形,∴∠1+∠4=900。 ∵∠3=∠4,∴∠1+∠3=900。∴∠AFD=900。 在正方形ABCD中,AD∥BC,∴∠1=∠AGB=300。 在Rt△ADF中,∠AFD=900,AD=2,∴AF=,DF =1。 由(1)得△ABE≌△ADF。∴AE=DF=1。∴EF=AF-AE=。 (2010山西18.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是______________. A B C D E (第18题) 1.(2010山东德州)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m. 第14题图 A时 B时 答案 : 4 (2010·浙江温州)16.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么APQR的周长等于 . 答案: 1.(2010,浙江义乌)在直角三角形中,满足条件的三边长可以是 ▲ .(写出一组即可) 【答案】3、4、5(答案不唯一,满足题意的均可) 45° 60° A′ B M A O D C (2010·绵阳)17.如图,一副三角板拼在一起,O为AD的中点,AB = a.将△ABO 沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为 .答案:查看更多