- 2021-04-14 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案6-3 第1课时 与摸球相关的等可能事件的概率 北师大版
6.3 等可能事件的概率 第1课时 与摸球相关的等可能事件的概率 1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点) 2.了解事件发生的等可能性及游戏规则的公平性.(难点) 一、情境导入 一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平? 二、合作探究 探究点一:与摸球有关的等可能事件的概率 【类型一】 摸球问题 一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为( ) A. B. C. D.[来源:学&科&网Z&X&X&K][来源:Z.xx.k.Com] 解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)==.故选C. 方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率. 【类型二】 与代数知识相关的问题 已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为( )[来源:Z_xx_k.Com] A. B. C. D. 解析:共有10个数,满足条件的有6个,则可得到所求的结果.∵m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,只有(-3)4=81,(-2)4=16,34=81,24=16小于100,∴P(m4>100)==.故选D. 探究点二:利用概率分析游戏规则是否公平 在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球. (1)小明从中任意摸出一个小球,摸到的白球机会是多少? (2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么? 解析:(1)由题意可得共有6种等可能的结果,其中从口袋中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可. 解:(1)∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,∴P(摸出一个白球)=;[来源:学科网ZXXK] (2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)==,P(小亮获胜)==,∴他们获胜的概率相等,即游戏是公平的. 方法总结:判断游戏是否公平,关键是看双方在游戏中所关注的事件所发生的概率是否相同. 三、板书设计[来源:学&科&网Z&X&X&K] 1.等可能事件的概率计算 2.等可能事件的概率的应用 教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1,通过适当的练习,及时巩固所学知识,引导学生从练习中总结解题规律,培养学生独立思考与归纳总结的能力查看更多