上海市上海中学2020届高三下学期数学综合练习卷5

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

上海市上海中学2020届高三下学期数学综合练习卷5

上海中学高三综合数学试卷05‎ ‎2020.04‎ 一、填空题 ‎1.已知复数则z的虚部为___.‎ ‎2.若则与共线的单位向量为___.‎ ‎3.设则x+y的最小值为____.‎ ‎ 4.已知矩阵则AB=___.‎ ‎5.若点在角α的终边上,则tan2α=____.‎ ‎6.将函数的图像向左平移一个单位后得到y= f(x)的图像,再将y= f(x)的图像绕原点旋转180°后仍与y= f(x)的图像重合,则a=__.‎ ‎7.已知函数则方程f(x)=x在区间(0,10)内所有实根的和为__.‎ ‎8.20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不小于它的编号数,则不同的放法种数为____.‎ ‎9.已知数列满足:则的前n项和____.‎ ‎10.若对任意实数x,都有则___.‎ ‎11.在△ABC中,角A、B、C所对的边为a、b、c,已知sin A + sin(B -C)= 2sin‎2C,abcosC=3,则△ABC面积的最大值为___.‎ ‎12. 设是平面曲线上任意三点,则的最小值为___.‎ 二、选择题 ‎13. 直线(t为参数)的倾斜角等于( )‎ ‎ D.arctan2‎ ‎14. 已知a>0, b>0,若则a+b的值不可能是( )‎ A.7 B‎.8 ‎ C.9 D.10‎ ‎15. 已知数列满足,则所有可能的值构成的集合为( )‎ ‎ B. [±2,±1,]‎ ‎ ‎ ‎16. 若点N为点M在平面α上的正投影,则记如图,在棱长为1的正方体中,记平面为β,平面ABCD为γ,点P是棱上一动点(与C、不重合),给出下列三个结论:‎ ‎①线段长度的取值范围是;‎ ‎②存在点P使得平面β;‎ ‎③存在点P使得;‎ 其中,所有正确结论的序号是(‎ A.①②③ B.②③ C.①③ D.①②‎ 三.解答题 ‎17.如图,在平面直角坐标系xOy中, A为单位圆与x轴正半轴的交点, P为单位圆上一点,且∠AOP=α,将点P沿单位圆按逆时针方向旋转角β后到点Q(a,b),其中 ‎(1)若点P的坐标为时,求ab的值;‎ ‎(2)求的取值范围.‎ ‎18. 如图所示,直三棱柱中,E、F分别是的中点,D为棱上的点.‎ ‎(1)证明:DF⊥AE;‎ ‎(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.‎ ‎19.中国高铁的快速发展给群众出行带来了巨大便利,极大促进了区域经济社会发展,已知某条高铁线路通车后,发车时间间隔t (单位:分钟)满足经测算,高铁的载客量与发车时间间隔t相关:当20≤t≤25时高铁为满载状态,载客量为1000人,当5≤t< 20时,载客量会在满载基础上减少,减少的人数与成正比,且发车时间为5分钟时的载客量为100人,记发车间隔时间为t分钟时,高铁载客量为P(t).‎ ‎(1)求P(t)的表达式;‎ ‎(2)若该线路发车时间间隔t分钟时的净收入(元),当发车时间间隔为多少时,单位时间的净收益最大.‎ ‎20.如图,曲线L由曲线( a>b>0, y≤0 )和曲线(y>0)组成,其中为曲线所在圆锥曲线的焦点,为曲线所在圆锥曲线的焦点.‎ ‎(1)若求曲线L的方程;‎ ‎(2)如图,作直线l平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上;‎ ‎(3)对于(1)中的曲线L,若直线过点交曲线于点C、D,求的面积的最大值.‎ ‎21.已知数列的前n项积为满足数列的首项为2,且满足 ‎(1)求数列的通项公式;‎ ‎(2)记集合,若集合M的元素个数为2,求实数λ的取值范围;‎ ‎(3)是否存在正整数p、q、r,使得成立?如果存在,请写出p、q、r满足的条件,如果不存在,请说明理由.‎
查看更多

相关文章

您可能关注的文档