甘肃省平凉市静宁一中2019-2020学年高一上学期考试数学(理)试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

甘肃省平凉市静宁一中2019-2020学年高一上学期考试数学(理)试题

‎2019-2020学年甘肃省平凉市静宁一中高一(上)第二次考试数学试卷(理科)‎ 一、选择题(本大题共12小题)‎ ‎1.已知全集,集合,则( )‎ A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】C ‎【解析】‎ ‎【详解】∵,‎ ‎,‎ ‎∴.‎ 故选:C.‎ ‎2.下列函数中,既是偶函数,又是在区间上单调递减的函数为( )‎ A. B. C. D. ‎ ‎【答案】A ‎【解析】‎ 试题分析:由偶函数定义知,仅A,C为偶函数, C.在区间上单调递增函数,故选A.‎ 考点:本题主要考查奇函数的概念、函数单调性、幂函数的性质.‎ 点评:函数奇偶性判定问题,应首先考虑函数的定义域是否关于原点对称.‎ ‎3.若函数,则f(f(10)=‎ A. lg101 B. ‎2 ‎C. 1 D. 0‎ ‎【答案】B ‎【解析】‎ ‎【详解】因为,所以.‎ 所以,故选B.‎ ‎【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.‎ ‎【此处有视频,请去附件查看】‎ ‎4.根据表格中的数据,可以断定函数的零点所在的区间是( )‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】‎ ‎【分析】‎ 由所给的表格可得,,根据零点的存在性定理可求得函数的零点所在的区间.‎ ‎【详解】由所给的表格可得,,‎ ‎,故函数的零点所在的区间为,‎ 故选:C.‎ ‎【点睛】本题考查函数零点的存在性定理的简单应用,难度较易.‎ ‎5.已知函数,则的解析式为  ‎ A. B. ‎ C. D. ‎ ‎【答案】B ‎【解析】‎ ‎【分析】‎ 利用换元法求函数解析式,注意换元后自变量范围变化.‎ ‎【详解】令,则,所以 即 .‎ ‎【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.‎ ‎6.已知函数的定义域为[-2, 3],则的定义域为 A. [-5,5] B. [-1,9] C. D. ‎ ‎【答案】C ‎【解析】‎ ‎【分析】‎ 由已知求出的定义域,再由在的定义域范围内求解的取值范围得到答案 ‎【详解】由函数的定义域为 即,得到,‎ 则函数的定义域为 由,解得 则的定义域为 故选 ‎【点睛】本题主要考查了函数的定义域及其求法,解题的关键是求出函数的定义域,属于基础题.‎ ‎7.已知,,,则a,b,c的大小关系为  ‎ A. B. C. D. ‎ ‎【答案】A ‎【解析】‎ ‎【分析】‎ 利用有理指数幂的运算性质与对数的运算性质分别比较a,b,c与0和1的大小得答案.‎ ‎【详解】∵a=21.2,‎ ‎=20.6>20=1,‎ 且21.2>20.6,‎ 而c=2log52=log54<1,‎ ‎∴c<b<a.‎ 故选A.‎ ‎【点睛】本题考查对数值的大小比较,考查对数的运算性质,是基础题.‎ ‎8.函数 y=lg|x﹣1|的图象是( )‎ A. B. C. D. ‎ ‎【答案】B ‎【解析】‎ ‎【分析】‎ 利用对数函数的性质和图片进行判断即可.‎ ‎【详解】当时,,‎ 当时,,‎ 故函数的图象为B.‎ 故选:B.‎ ‎【点睛】函数图象的识辨可从以下方面入手:‎ ‎(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;‎ ‎(2)从函数的单调性,判断图象的变化趋势;‎ ‎(3)从函数的奇偶性,判断图象的对称性;‎ ‎(4)从函数的周期性,判断图象的循环往复;‎ ‎(5)从函数的特征点,排除不合要求的图象.‎ ‎9.已知分别是定义在上的偶函数和奇函数,且,则 A. B. C. D. ‎ ‎【答案】D ‎【解析】‎ ‎【分析】‎ 将原代数式中的x替换成﹣x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.‎ ‎【详解】由f(x)﹣g(x)=,将所有x替换成﹣x,得 f(﹣x)﹣g(﹣x)=﹣x3+x2,‎ 根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得 f(x)+g(x)=﹣x3+x2,再令x=1,计算得,‎ f(1)+g(1)=﹣1.‎ 故选D.‎ ‎【点睛】本题考查了函数奇偶性的应用,利用定义得到f(x)+g(x)=﹣x3+x2是解题的关键.‎ ‎10.已知函数且满足,则实数a的取值范围是( )‎ A. B. C. D. ‎ ‎【答案】A ‎【解析】‎ ‎【分析】‎ 说明函数为上的减函数,由此可以列出关于的不等式组,由此解得的组织范围.‎ ‎【详解】根据题意,说明函数为上的减函数,故,解得,故选A.‎ ‎【点睛】本小题考查函数的单调性,考查指数函数和一次函数单调性.一次函数单调性由一次项的系数觉得,指数函数的单调性有底数来决定.‎ ‎11.幂函数在上单调递增,则的值为( )‎ A. 2 B. ‎3 ‎C. 4 D. 2或4‎ ‎【答案】C ‎【解析】‎ ‎【分析】‎ 由幂函数的定义得到方程,求的值,再根据函数的单调性检验的值.‎ ‎【详解】由题意得: ,解得 ‎【点睛】本题考查幂函数的单调性,即当时,它在单调递增.‎ ‎12.已知,则函数的零点个数为( )‎ A. 2 B. ‎3 ‎C. 4 D. 2,3或4‎ ‎【答案】A ‎【解析】‎ 函数的零点个数,等于函数和函数的图象的交点个数.如图所示,‎ 数行结合可得,函数和函数的图象的交点个数为,‎ 故时,函数的零点个数为 故选 点睛:本题主要考查的是函数的零点与方程根的关系.函数的零点个数,等于函数和函数的图象的交点个数,然后画出图象,结合图象得出结论.‎ 二、填空题(本大题共4小题)‎ ‎13.函数的定义域为___.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 根据式子成立的条件,对数式要求真数大于零,分式要求分母不等于零,即可求得函数的定义域.‎ ‎【详解】要使函数有意义,则,‎ 解得且,‎ 所以函数的定义域为:,‎ 故答案是:.‎ ‎【点睛】该题考查的是有关函数的定义域的求解问题,在求解的过程中,注意对数式和分式成立的条件即可,属于简单题目.‎ ‎14.函数且恒过定点的坐标为______.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 令对数型函数中的真数等于,求解出此时的并求出,即为所过的定点坐标.‎ ‎【详解】函数且,‎ 令,求得,,可得它的图象恒过定点.‎ 故答案为:.‎ ‎【点睛】本题考查对数型函数的所过的定点问题,难度较易.对于形如的对数型函数,‎ 其所过的定点坐标求法:令对数函数的真数部分为,求解出同时求解出,此时的即为对数型函数所过点的定点.‎ ‎15.若函数的零点个数为2,则a的范围是______.‎ ‎【答案】或 ‎【解析】‎ ‎【分析】‎ 将函数的零点个数问题转化为图象的交点个数问题:作出的图象,再作出的图象,考虑当与有两个交点时的取值范围.‎ 详解】令,‎ 画出函数的图象,‎ 当时,当或时,.‎ 当或时,函数的零点个数为2.‎ 故答案为:或.‎ ‎【点睛】本题考查利用数形结合的方法解决函数的零点个数问题,难度一般.‎ ‎(1)函数的零点个数方程的根的数目与 的图象交点个数;‎ ‎(2)利用数形结合思想不仅可以解决函数的零点个数、方程根的数目、函数图象的交点数问题,还可以研究函数的性质、解不等式或求解参数范围等.‎ ‎16.下列结论中:‎ ‎①定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)在R上是增函数;②若f(2)=f(-2),则函数f(x)不是奇函数;③函数y=x-0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x0是二次函数y=f(x)的零点,且m
查看更多

相关文章