2010年数学试题分类汇编江苏卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2010年数学试题分类汇编江苏卷

‎2010年数学试题分类汇编江苏卷 一、填空题 ‎1、设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。下列命题:‎ ‎①集合S={a+bi|(为整数,为虚数单位)}为封闭集;‎ ‎②若S为封闭集,则一定有;‎ ‎③封闭集一定是无限集;‎ ‎④若S为封闭集,则满足的任意集合也是封闭集.‎ 其中真命题是 (写出所有真命题的序号)‎ ‎2、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=___________.‎ ‎3、(本小题满分12分)‎ ‎ 设为实数,函数。‎ ‎ (Ⅰ)求的单调区间与极值;‎ ‎(Ⅱ)求证:当且时,。‎ ‎4、(本小题满分16分)‎ 设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。‎ ‎(1)设函数,其中为实数。‎ ‎(i)求证:函数具有性质; (ii)求函数的单调区间。‎ ‎(2)已知函数具有性质。给定设为实数,‎ ‎,,且,‎ 若||<||,求的取值范围。‎ ‎5、将边长为‎1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是________。‎ ‎6、已知函数,则满足不等式的x的范围是_____。‎ ‎7、设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=________________‎ ‎8、已知定义域为的函数满足:①对任意,恒有成立;当时,。给出如下结论:‎ ‎①对任意,有;②函数的值域为;③存在,使得;④“函数在区间上单调递减”的充要条件是 “存在,使得 ‎”。‎ 其中所有正确结论的序号是 。‎ ‎9、‎ 二、解答题 ‎10、(本小题满分14分)‎ 如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。‎ ‎(1)求证:PC⊥BC;‎ ‎(2)求点A到平面PBC的距离。‎ ‎[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。‎ ‎11、(本小题满分14分)‎ 在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。‎ ‎(3)求以线段AB、AC为邻边的平行四边形两条对角线的长;‎ ‎(4)设实数t满足()·=0,求t的值。‎ ‎[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。‎ ‎12、(本小题满分14分)‎ 在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。‎ ‎(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;‎ ‎(2)设实数t满足()·=0,求t的值。‎ ‎[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。‎ 三、填空题 ‎13、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是___________‎ ‎14、‎ ‎15、右图是一个算法的流程图,则输出S的值是_____________‎ ‎16、如图所示,程序框图(算法流程图)的输出值________。‎ ‎17、执行右图所示的程序框图,若输入,则输出的值为 .‎ 开始 否 输出s 结束 是 ‎18、图2是求 的值的程序框图,则正整数 .‎ ‎19、某射手射击所得环数的分布列如下:‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ P x ‎0.1‎ ‎0.3‎ y 已知的期望E=8.9,则y的值为 .‎ ‎20、某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。‎ ‎21、3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ __.‎ ‎22、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。‎ ‎①; ②; ③事件与事件相互独立;‎ ‎④是两两互斥的事件; ⑤的值不能确定,因为它与中哪一个发生有关 ‎23、本小题满分10分)‎ 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。‎ ‎(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;‎ ‎(2)求生产4件甲产品所获得的利润不少于10万元的概率。‎ ‎[解析] 本题主要考查概率的有关知识,考查运算求解能力。满分10分。‎ ‎24、已知函数和的图象的对称轴完全相同。若,则的取值范围是 。‎ ‎25、观察下列等式:‎ ‎ ① cos‎2a=2-1;‎ ‎② cos‎4a=8- 8+ 1;‎ ‎③ cos‎6a=32- 48+ 18- 1;‎ ‎④ cos‎8a=128- 256+ 160- 32+ 1;‎ ‎⑤ cos‎10a= m- 1280+ 1120+ n+ p- 1.‎ 可以推测,m – n + p = .‎ ‎26、已知为第三象限的角,,则 .‎ ‎27、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。‎ ‎28、已知为第二象限的角,,则 .‎ 四、解答题 ‎29、(本小题满分12分)‎ ‎ 设是锐角三角形,分别是内角所对边长,并且 ‎。‎ ‎ (Ⅰ)求角的值;‎ ‎(Ⅱ)若,求(其中)。‎ ‎30、(本小题满分14分)‎ 某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=‎4m,仰角∠ABE=,∠ADE=。‎ ‎(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;‎ ‎(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为‎125m,试问d为多少时,-最大?‎ 五、填空题 ‎31、在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .‎ ‎32、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_________‎ ‎33、设{an}是等比数列,公比,Sn为{an}的前n项和。记设为数列{}的最大项,则= 。‎ ‎34、若数列满足:对任意的,只有有限个正整数使得成立,记这样的的个数为,则得到一个新数列.例如,若数列是,则数列是.已知对任意的,,则 ,‎ ‎ .‎ 六、解答题 ‎35、(本小题满分16分)‎ 设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。‎ ‎(1)求数列的通项公式(用表示);‎ ‎(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。‎ 七、填空题 ‎36、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是__________‎ ‎37、已知椭圆的两焦点为,点满足,则||+|的取值范围为_______,直线与椭圆C的公共点个数_____。‎ ‎38、若双曲线-=1(b>0)的渐近线方程式为y=,则b等于        。‎ ‎39、已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点, 且,则的离心率为 .‎ 八、解答题 ‎40、(本小题满分10分)‎ 在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B‎1C1的面积是△ABC面积的2倍,求k的值。‎ ‎[解析] 本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力。满分10分。‎ ‎41、(本小题满分10分)‎ 在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。‎ ‎[解析] 本题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力。满分10分。‎ ‎42、(本小题满分10分)‎ 设a、b是非负实数,求证:。‎ ‎[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。满分10分。‎ ‎43、.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。‎ A. ‎ ‎(本小题满分10分)‎ AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。‎ 以下是答案 一、填空题 ‎1、①②‎ 解析:直接验证可知①正确.‎ 当S为封闭集时,因为x-y∈S,取x=y,得0∈S,②正确 对于集合S={0},显然满足素有条件,但S是有限集,③错误 取S={0},T={0,1},满足,但由于0-1=-1ÏT,故T不是封闭集,④错误 ‎2、1‎ ‎[解析] 考查集合的运算推理。3B, a+2=3, a=1.‎ ‎3、‎ ‎4、[解析] 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。‎ ‎(1)(i)‎ ‎∵时,恒成立,‎ ‎∴函数具有性质;‎ ‎(ii)(方法一)设,与的符号相同。‎ 当时,,,故此时在区间上递增;‎ 当时,对于,有,所以此时在区间上递增;‎ 当时,图像开口向上,对称轴,而,‎ 对于,总有,,故此时在区间上递增;‎ ‎(方法二)当时,对于,‎ ‎ 所以,故此时在区间上递增;‎ 当时,图像开口向上,对称轴,方程的两根为:‎ ‎,而 ‎ 当时,,,故此时在区间 上递减;同理得:在区间上递增。‎ 综上所述,当时,在区间上递增;‎ ‎ 当时,在上递减;在上递增。‎ ‎(2)(方法一)由题意,得:‎ 又对任意的都有>0,‎ 所以对任意的都有,在上递增。‎ 又。‎ 当时,,且,‎ ‎ ‎ 综合以上讨论,得:所求的取值范围是(0,1)。‎ ‎(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。‎ ‎①当时,有,‎ ‎,得,同理可得,所以由的单调性知、,‎ 从而有||<||,符合题设。‎ ‎②当时,,‎ ‎,于是由及的单调性知,所以||≥||,与题设不符。‎ ‎③当时,同理可得,进而得||≥||,与题设不符。‎ 因此综合①、②、③得所求的的取值范围是(0,1)。‎ ‎5、[解析] 考查函数中的建模应用,等价转化思想。一题多解。‎ 设剪成的小正三角形的边长为,则:‎ ‎(方法一)利用导数求函数最小值。‎ ‎,‎ ‎,‎ 当时,递减;当时,递增;‎ 故当时,S的最小值是。‎ ‎(方法二)利用函数的方法求最小值。‎ 令,则:‎ 故当时,S的最小值是。‎ ‎6、[解析] 考查分段函数的单调性。‎ ‎7、a=-1‎ ‎[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由g(0)=0,得a=-1。‎ ‎8、①②④‎ ‎【解析】对①,因为,所以,故①正确;经分析,容易得出②④也正确。‎ ‎【命题意图】本题考查函数的性质与充要条件,熟练基础知识是解答好本题的关键。‎ ‎9、‎ 二、解答题 ‎10、(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。‎ 由∠BCD=900,得CD⊥BC,‎ 又PDDC=D,PD、DC平面PCD,‎ 所以BC⊥平面PCD。‎ 因为PC平面PCD,故PC⊥BC。‎ ‎(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:‎ 易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。‎ 又点A到平面PBC的距离等于E到平面PBC的距离的2倍。‎ 由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,‎ 因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。‎ 易知DF=,故点A到平面PBC的距离等于。‎ ‎(方法二)体积法:连结AC。设点A到平面PBC的距离为h。‎ 因为AB∥DC,∠BCD=900,所以∠ABC=900。‎ 从而AB=2,BC=1,得的面积。‎ 由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。‎ 因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。‎ 又PD=DC=1,所以。‎ 由PC⊥BC,BC=1,得的面积。‎ 由,,得,‎ 故点A到平面PBC的距离等于。‎ ‎11、(1)(方法一)由题设知,则 所以 故所求的两条对角线的长分别为、。‎ ‎(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:‎ E为B、C的中点,E(0,1)‎ 又E(0,1)为A、D的中点,所以D(1,4)‎ ‎ 故所求的两条对角线的长分别为BC=、AD=;‎ ‎(2)由题设知:=(-2,-1),。‎ 由()·=0,得:,‎ 从而所以。‎ 或者:,‎ ‎12、(1)(方法一)由题设知,则 所以 故所求的两条对角线的长分别为、。‎ ‎(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:‎ E为B、C的中点,E(0,1)‎ 又E(0,1)为A、D的中点,所以D(1,4)‎ ‎ 故所求的两条对角线的长分别为BC=、AD=;‎ ‎(2)由题设知:=(-2,-1),。‎ 由()·=0,得:,‎ 从而所以。‎ 或者:,‎ 三、填空题 ‎13、[解析]考查圆与直线的位置关系。 圆半径为2,‎ 圆心(0,0)到直线12x-5y+c=0的距离小于1,,的取值范围是(-13,13)。‎ ‎14、【解析】由题意,设所求的直线方程为,设圆心坐标为,则由题意知:‎ ‎,解得或-1,又因为圆心在x轴的正半轴上,所以,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有,即,故所求的直线方程为。‎ ‎【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。‎ ‎15、[解析]考查流程图理解。输出。‎ ‎16、14.12‎ ‎【解析】‎ 程序运行如下:‎ ‎,‎ 输出12。‎ ‎【规律总结】这类问题,通常由开始一步一步运行,根据判断条件,要么几步后就会输出结果,要么就会出现规律,如周期性,等差或等比数列型.‎ ‎17、‎ ‎【解析】当x=10时,y=,此时|y-x|=6;‎ 当x=4时,y=,此时|y-x|=3;当x=1时,y=,此时|y-x|=;‎ 当x=时,y=,此时|y-x|=,故输出y的值为。‎ ‎【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力。‎ ‎18、‎ ‎19、【答案】0.4‎ ‎【解析】由表格可知:‎ 联合解得.‎ ‎20、0.128‎ ‎【解析】由题意知,所求概率为。‎ ‎【命题意图】本题考查独立重复试验的概率,考查基础知识的同时,进一步考查同学们的分析问题、解决问题的能力。‎ ‎21、‎ ‎ [解析]考查古典概型知识。‎ ‎22、②④‎ ‎【解析】易见是两两互斥的事件,而 ‎。‎ ‎【方法总结】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的.‎ ‎23、解:(1)由题设知,X的可能取值为10,5,2,-3,且 ‎ P(X=10)=0.8×0.9=0.72, P(X=5)=0.2×0.9=0.18,‎ ‎ P(X=2)=0.8×0.1=0.08, P(X=-3)=0.2×0.1=0.02。‎ ‎ 由此得X的分布列为:‎ X ‎10‎ ‎5‎ ‎2‎ ‎-3‎ P ‎0.72‎ ‎0.18‎ ‎0.08‎ ‎0.02‎ ‎(2)设生产的4件甲产品中一等品有件,则二等品有件。‎ ‎ 由题设知,解得,‎ ‎ 又,得,或。‎ 所求概率为 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。‎ ‎24、‎ ‎【解析】由题意知,,因为,所以,由三角函数图象知:‎ 的最小值为,最大值为,所以的取值范围是。‎ ‎25、962‎ ‎【解析】因为所以;观察可得,‎ ‎,所以m – n + p =962。‎ ‎【命题意图】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等。‎ ‎26、‎ ‎27、[解析] 考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,‎ 且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为 ‎28、‎ ‎【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.‎ ‎【解析】因为为第二象限的角,又, 所以,,所 四、解答题 ‎29、‎ ‎30、[解析] 本题主要考查解三角形的知识、两角差的正切及不等式的应用。‎ ‎(1),同理:,。‎ ‎ AD—AB=DB,故得,解得:。‎ 因此,算出的电视塔的高度H是‎124m。‎ ‎(2)由题设知,得,‎ ‎,(当且仅当时,取等号)‎ 故当时,最大。‎ 因为,则,所以当时,-最大。‎ 故所求的是m。‎ 五、填空题 ‎31、‎ ‎【解析】由题意知,解得,所以通项。‎ ‎【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。‎ ‎32、[解析]考查函数的切线方程、数列的通项。 ‎ 在点(ak,ak2)处的切线方程为:当时,解得,‎ 所以。‎ ‎33、4‎ ‎【解析】本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题。‎ 因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时Tn有最大值。‎ ‎【温馨提示】本题的实质是求Tn取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.‎ ‎34、‎ 六、解答题 ‎35、[解析] 本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。满分16分。‎ ‎(1)由题意知:, ‎ ‎,‎ 化简,得:‎ ‎,‎ 当时,,适合情形。‎ 故所求 ‎(2)(方法一)‎ ‎, 恒成立。‎ ‎ 又,,‎ 故,即的最大值为。‎ ‎(方法二)由及,得,。‎ 于是,对满足题设的,,有 ‎。‎ 所以的最大值。‎ 另一方面,任取实数。设为偶数,令,则符合条件,且。‎ 于是,只要,即当时,。‎ 所以满足条件的,从而。‎ 因此的最大值为。‎ 七、填空题 ‎36、=2,MF=4。‎ ‎ [解析]考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。‎ ‎37、‎ ‎【解析】依题意知,点P在椭圆内部.画出图形,由数形结合可得,当P在原点处时,当P在椭圆顶点处时,取到为 ‎,故范围为.因为在椭圆的内部,则直线上的点(x, y)均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个.‎ ‎38、1‎ ‎【解析】由题意知,解得b=1。‎ ‎【命题意图】本小题考查双曲线的几何性质、待定系数法,属基础题。‎ ‎39、‎ ‎【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.‎ ‎【解析1】如图,,‎ 作轴于点D1,则由,得 ‎,所以,‎ 即,由椭圆的第二定义得 又由,得 ‎【解析2】设椭圆方程为第一标准形式,设,F分 BD所成的比为2,,代入 ‎,‎ 八、解答题 ‎40、解:由题设得 由,可知A1(0,0)、B1(0,-2)、C1(,-2)。‎ 计算得△ABC面积的面积是1,△A1B‎1C1的面积是,则由题设知:。‎ 所以k的值为2或-2。‎ ‎41、解:,圆ρ=2cosθ的普通方程为:,‎ 直线3ρcosθ+4ρsinθ+a=0的普通方程为:,‎ 又圆与直线相切,所以解得:,或。‎ ‎42、(方法一)证明:‎ 因为实数a、b≥0,‎ 所以上式≥0。即有。‎ ‎(方法二)证明:由a、b是非负实数,作差得 当时,,从而,得;‎ 当时,,从而,得;‎ 所以。‎ ‎43、[解析] 本题主要考查三角形、圆的有关知识,考查推理论证能力。‎ ‎(方法一)证明:连结OD,则:OD⊥DC, ‎ 又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO, ‎ ‎∠DOC=∠DAO+∠ODA=2∠DCO,‎ 所以∠DCO=300,∠DOC=600,‎ 所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。‎ ‎(方法二)证明:连结OD、BD。‎ 因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。‎ 因为DC 是圆O的切线,所以∠CDO=900。‎ 又因为DA=DC,所以∠DAC=∠DCA,‎ 于是△ADB≌△CDO,从而AB=CO。‎ 即2OB=OB+BC,得OB=BC。‎ 故AB=2BC。‎
查看更多

相关文章

您可能关注的文档