- 2021-04-13 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届高三数学一轮复习: 重点强化训练4 直线与圆
重点强化训练(四) 直线与圆 A组 基础达标 (建议用时:30分钟) 一、选择题 1.“a=”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 A [由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直得(a+1)(a-1)+3a×(a+1)=0,解得a=或a=-1. ∴“a=”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0互相垂直”的充分不必要条件.] 2.若圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a-b的取值范围是( ) A.(-∞,4) B.(-∞,0) C.(-4,+∞) D.(4,+∞) A [圆的方程可变为(x-1)2+(y+3)2=10-5a, 可知圆心(1,-3),且10-5a>0,即a<2. ∵圆关于直线y=x+2b对称, ∴点(1,-3)在直线上,则b=-2. ∴a-b=2+a<4.] 3.已知定点A(1,0),点B在直线x-y=0上运动,当线段AB最短时,点B的坐标是( ) A. B. C. D. A [因为定点A(1,0),点B在直线x-y=0上运动,所以当线段AB最短时,直线AB和直线x-y=0垂直,AB的方程为y+x-1=0,它与x-y=0联立解得x=,y=,所以B的坐标是.] 4.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( ) 【导学号:01772306】 A. B. C. D. D [因为l与圆x2+y2=1有公共点,则l的斜率存在,设斜率为k,所以直线l的方程为y+1=k(x+), 即kx-y+k-1=0, 则圆心到l的距离d=. 依题意,得≤1,解得0≤k≤. 故直线l的倾斜角的取值范围是.] 5.(2017·重庆一中模拟)已知圆C:(x-1)2+(y-2)2=2,y轴被圆C截得的弦长与直线y=2x+b被圆C截得的弦长相等,则b=( ) 【导学号:01772307】 A.- B.± C.- D.± D [在(x-1)2+(y-2)2=2中,令x=0,得(y-2)2=1,解得y1=3,y2=1,则y轴被圆C截得的弦长为2,所以直线y=2x+b被圆C截得的弦长为2,所以圆心C(1,2)到直线y=2x+b的距离为1, 即=1,解得b=±.] 二、填空题 6.经过两条直线3x+4y-5=0和3x-4y-13=0的交点,且斜率为2的直线方程是__________. 【导学号:01772308】 2x-y-7=0 [由得即两直线的交点坐标为(3,-1),又所求直线的斜率k=2. 则所求直线的方程为y+1=2(x-3),即2x-y-7=0.] 7.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=__________. 2 [因为点P(2,2)为圆(x-1)2+y2=5上的点, 由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直. 因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P(2,2)的切线斜率为-, 所以直线ax-y+1=0的斜率为2,因此a=2.] 8.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为__________. 0或6 [由x2+y2+2x-4y-4=0得(x+1)2+(y-2)2=9,所以圆C的圆心坐标为C(-1,2),半径为3,由AC⊥BC可知△ABC是直角边长为3的等腰直角三角形.故可得圆心C到直线x-y+a=0的距离为.由点到直线的距离得=, 解得a=0或a=6.] 三、解答题 9.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A,B两点,且|AB|=2时,求直线l的方程. [解] 将圆C的方程x2+y2-8y+12=0配方得标准方程为x2+(y-4)2=4,则此圆的圆心为(0,4),半径为2.2分 (1)若直线l与圆C相切,则有=2,解得a=-.5分 (2)过圆心C作CD⊥AB,则根据题意和圆的性质, 得8分 解得a=-7或a=-1. 故所求直线方程为7x-y+14=0或x-y+2=0.12分 10.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程; (2)若∠PBQ=90°,求线段PQ中点的轨迹方程. [解] (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).2分 因为P点在圆x2+y2=4上, 所以(2x-2)2+(2y)2=4, 故线段AP中点的轨迹方程为(x-1)2+y2=1.5分 (2)设PQ的中点为N(x,y).在Rt△PBQ中, |PN|=|BN|.7分 设O为坐标原点,连接ON,则ON⊥PQ, 所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,10分 所以x2+y2+(x-1)2+(y-1)2=4. 故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.12分 B组 能力提升 (建议用时:15分钟) 1.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 A [将直线l的方程化为一般式得kx-y+1=0, 所以圆O:x2+y2=1的圆心到该直线的距离d=. 又弦长为2=, 所以S△OAB=··==, 解得k=±1. 因此可知“k=1”是“△OAB的面积为”的充分不必要条件.] 2.(2017·衡水中学二调)已知点P的坐标(x,y)满足过点P的直线l与圆C:x2+y2=14相交于A,B两点,则|AB|的最小值为__________. 4 [作出不等式组表示的平面区域如图中阴影部分所示.要使弦AB最短,只需弦心距最大,根据图形知点P(1,3)到圆心的距离最大,则|OP|=,圆的半径为. ∴|AB|min=2=2=4.] 3.已知圆C:x2+y2-6x-4y+4=0,直线l1被圆所截得的弦的中点为P(5,3). (1)求直线l1的方程; (2)若直线l2:x+y+b=0与圆C相交,求b的取值范围; (3)是否存在常数b,使得直线l2被圆C所截得的弦的中点落在直线l1上?若存在,求出b的值;若不存在,说明理由. 【导学号:01772309】 [解] (1)圆C的方程化为标准方程为(x-3)2+(y-2)2=9,于是圆心C(3,2),半径r=3.1分 若设直线l1的斜率为k,则k=-=-=-2. 所以直线l1的方程为y-3=-2(x-5),即2x+y-13=0.3分 (2)因为圆的半径r=3,所以要使直线l2与圆C相交,则有<3,5分 所以|b+5|<3, 于是b的取值范围是-3-5查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档