中考数学复习专题代数式

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学复习专题代数式

中考数学复习专题 代数式 一. 教学目标:‎ ‎1. 复习整式的有关概念,整式的运算 ‎2. 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,能把简单多项式分解因式。‎ ‎3. 掌握分式的概念、性质,掌握分式的约分、通分、混合运算。‎ ‎4. 理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。会求实数的平方根、算术平方根和立方根,了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。‎ 二. 教学重点、难点:‎ 因式分解法在整式、分式、二次根式的化简与混合运算中的综合运用。‎ 三.知识要点:‎ 知识点1 整式的概念 ‎(1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式;‎ ‎(2)单项式的次数是所有字母的指数之和;‎ 多项式的次数是多项式中最高次项的次数;‎ ‎(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号 ‎(4)同类项概念的两个相同与两个无关:‎ ‎ 两个相同:一是所含字母相同,二是相同字母的指数相同;‎ ‎ 两个无关:一是与系数的大小无关,二是与字母的顺序无关;‎ ‎(5)整式加减的实质是合并同类项;‎ ‎(6)因式分解与整式乘法的过程恰为相反。‎ 知识点2 整式的运算 (如结构图)‎ 知识点3 因式分解 ‎ 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:‎ ‎ (1)提公因式法 ‎ 如多项式 其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式.‎ ‎ (2)运用公式法,即用 ‎ 写出结果.‎ ‎ (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足 a‎1a2=a,c‎1c2=c,a‎1c2+a‎2c1=b的a1,a2,c1,c2,如有,则 ‎(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.‎ 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.‎ ‎(5)求根公式法:如果有两个根x1,x2,那么。‎ 知识点4 分式的概念 ‎(1)分式的定义:整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么称为分式,其中A称为分式的分子,B为分式的分母。‎ 对于任意一个分式,分母都不能为零。‎ ‎(2)分式的约分 ‎(3)分式的通分 知识点5 分式的性质 ‎(1)(2)已知分式,分式的值为正:a与b同号;分式的值为负:a与b异号;分式的值为零:a=0且b0;分式有意义:b0。‎ ‎(3)零指数 ‎ ‎(4)负整数指数 ‎ ‎(5)整数幂的运算性质 ‎ 上述等式中的m、n可以是0或负整数.‎ 知识点6 根式的有关概念 ‎1. 平方根:若x2=a(a>0),则x叫做a的平方根,记为。‎ 注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;‎ ‎2. 算术平方根:一个数的正的平方根叫做算术平方根;‎ ‎3. 立方根:若x3=a(a>0),则x叫做a的立方根,记为。‎ ‎4. 最简二次根式 ‎ 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。‎ ‎5. 同类二次根式:化简后被开方数相同的二次根式。‎ 知识点7 二次根式的性质 ‎①是一个非负数; ②‎ ‎③ ④‎ ‎⑤‎ 知识点8 二次根式的运算 ‎(1)二次根式的加减 ‎ 二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.‎ ‎ (2)二次根式的乘法 ‎ 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 二次根式的和相乘,可参照多项式的乘法进行.‎ ‎ 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式.‎ ‎ (3)二次根式的除法 ‎ ‎ ‎ 二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.‎ 例题精讲 例1. 如果单项式与的和①为0时,a、m、n各为多少? ②仍为一个单项式,a、m、n各为多少?‎ 解:① ② ‎ a为有理数 ‎ 例2. 因式分解:(1) (2) (3)-2x2+5xy+2y2  ‎ 解:①原式=m(2x+3y)(2x-3y) ‎ ‎②原式 ‎③令 ‎∴ ∴ ‎ 原式=-2(x-)(x-)‎ 例3. (1)已知的结果中不含项,求k的值;‎ ‎(2)的一个因式是,求k的值;‎ 解:(1)a2的系数为:3k-2=0 ∴k=‎ ‎(2)当a=-1时(-1)3-(-1)2+(-1)+k=0 ∴k=3‎ 例4. 利用简便方法计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)的值,‎ 你能确定积的个位数是几吗?‎ 解:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)‎ ‎=264-1 ∵264的个位数为6 ∴积的个位数字为5‎ 例5. x为何值时,下列分式的值为0?无意义?‎ ‎(1) (2) ‎ 解:当①x=2 ②x=1 时为零 当③x=-2 ④x=2,x=-1时分式无意义 例6. 分式的约分与通分 ‎1. 约分: 2. 通分,,‎ 解:①原式= ②,,‎ 例7. 先化简后再求值:,其中 原式=×+‎ ‎ =+=‎ 当x=+1时,原式=1‎ 例8. 若最简二次根式是同类二次根式,求a的值。‎ 解:1+a=‎4a2-2=0, a1=1 , a2=-‎ 例9. 已知:a=,求值 解:∵a= ∴a=2-<1 ‎ 原式=+1 =-(a-1)+1 =-a+1+1=-a+2‎ 当a=时,a=2-, ‎ ‎∴原式=-2--2++2=-2‎ 例10. 把根号外的因式移到根号内: ‎ ‎(1); (2); (3); (4)‎ 解:(1)原式= (2)原式= (3)原式= (4)原式=‎ 例11. 观察下列各式及其验证过程 ‎2。验证:‎ ‎3。验证:‎ 根据上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证。‎ 针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明。‎ 解:(1) ‎ ‎(2)‎ 课后练习 一. 选择题 ‎1. 下列运算正确的是( )‎ ‎ A. B. C. D. ‎ ‎2. 把a2-a-6分解因式,正确的是( )‎ A. a(a-1)-6 B. (a-2)(a+3) C. (a+2)(a-3) D. (a-1)(a+6)‎ ‎3. 设(x+y)(x+2+y)-15=0,则x+y的值是(  )‎ A. -5或3 B. -3或‎5 ‎ C. 3 D. 5‎ ‎4. 不论a为何值,代数式-a2+4a-5的值(  )‎ A. 大于或等于0 B. ‎0 ‎ C. 大于0 D. 小于0‎ ‎5. 化简二次根式的结果是( )‎ A. B. C. D. ‎ ‎6. 下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( )‎ A. 1 B. ‎2 ‎ C. 3 D. 4‎ ‎7. 当1
查看更多