- 2021-04-13 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
二次函数y=a(x-h)2的图像和性质 教案
课题 22.1.3.1 二次函数y=a(x-h)2 的图像和性质 课 时 第四课时 主备教师 成 员 教学目标 1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。 2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。 重点: 难点: 重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系是教学的重点。 难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系是教学的难点。 教学过程:一、提出问题 1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答: (1)两条抛物线的位置关系。(2)分别说出它们的对称轴、开口方向和顶点坐标。(3)说出它们所具有的公共性质。 2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系? 二、分析问题,解决问题 问题1:你将用什么方法来研究上面提出的问题? 问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗? 1.让学生完成下表填空。[来源:学。科。网Z。X。X。K] x … -3 -2 -1 0 1 2 3 … y=2x2 y=2(x-1)2[来源:学&科&网Z&X&X&K] 2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。 问题3:现在你能回答前面提出的问题吗? 1.教师引导学生观察画出的两个函数图象.根据所画出的图象,完成以下填空: 开口方向 对称轴 顶点坐标 y=2x2 y=2(x-1)2 2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2 二次备课建议: 2 的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。 问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗? 2.让学生完成以下填空: 当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。[来源:Zxxk.Com] 三、做一做 问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗? 归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。 问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗? 当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。 问题7:在同一直角坐标系中,函数y=-(x+2)2图象与函数y=-x2的图象有何关系? 问题8:你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗? 问题9:你能得到函数y=(x+2)2的性质吗? 四、课堂练习: P35练习。 五、小结:.谈谈本节课的收获和体会。 六、作业设置:同步学习32页4,5题 板书设计: 教学反思: 2查看更多