- 2021-04-13 发布 |
- 37.5 KB |
- 27页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
五年级上册数学课件-第七单元练习二十四 人教版(共27张PPT)
数学广角 —— 植树问题 7 人教版五年级数学上册 练习二十四 二 复习回顾 有 4 个间隔,种 了 3 棵树。 有 4 个间隔,种 了 5 棵树。 两端都栽 两端都不栽 一端栽一端不栽 封闭曲线上植树 有 4 个间隔,种 了 4 棵树。 有 4 个间隔,种 了 4 棵树。 棵 树 = 间隔 数 +1 棵 树 = 间隔 数 − 1 棵 树 = 间隔 数 棵 树 = 间隔 数 植树问题分为植树 路线是不封闭 的、植树 路线是封闭 的两种情况。 二 强化巩固 ( 教科书 第 109 ~ 111 页练习二十四 ) 1 . 马路一边栽 了 2 5 棵梧桐树,如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵银杏树。 分析: 梧桐树 银杏树 2 1 3 2 …… …… 25 24 − 1 − 1 − 1 二 强化巩固 ( 教科书 第 109 ~ 111 页练习二十四 ) 1. 马路一边栽 了 2 5 棵梧桐树,如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵银杏树。 答:一共要 栽 2 4 棵银杏树。 2 5− 1= 24 (棵) 解: 2. 5 路公共汽车行驶路线全 长 12k m , 相邻两站之间的路程都 是 1k m 。一共设有多少个车站? 12 ÷ 1 + 1= 13 ( 个) 解: 答:一共设有 1 3 个车站。 3. 工人们正在架设电线杆,相邻两根间的距离 是 20 0 m 。在总 长 300 0m 的笔直路上,一共要架设多少根电线杆(两端都架设)? 3000 ÷20 0 + 1= 16 ( 根) 解: 答:一共要架 设 1 6 根电 线杆。 4. 园林工人沿一条笔直的公路一侧植树,每隔 6m 种一棵,一共种 了 3 6 棵。从第一棵到最后一棵的距离有多远? ( 3 6 −1 ) × 6 = 21 0( m) 解: 答:从第一棵道最后一棵 的距离 是 21 0 米。 5. 广场上的大 钟 5 时敲 响 5 下, 8 秒钟敲完。 12 时敲 响 1 2 下,敲完需要多长时间? 每敲一下的时间是: 解: 答:敲完需 要 2 2 秒。 8 ÷ (5 −1 )= 2 ( 秒) 敲完需要的时间是: ( 1 2 −1 ) × 2 = 22 ( 秒) 6. 一条走廊 长 3 2 m ,每 隔 4m 摆放一盆植物(两端不放)。一共要放多少盆植物? 解: 答:一共要 放 7 盆植物。 32 ÷ 4 − 1= 7 ( 盆) 7. 马拉松比赛全程 约 4 2 km 。平均 每 3 k m 设置一处饮水服务点 ( 起点不设,终点设 ) ,全程一共有多少处这样的服务点? 解: 答:全程一共 有 1 4 处 这样的服务点。 42 ÷ 3 = 14 ( 处) 8. 一根木头 长 1 0 m ,要把它平均分 成 5 段。每锯下一段需 要 8 分钟。锯完一共要花多少分钟? (5 −1 ) × 8 = 32 ( 分钟) 解: 答:锯完一共要 花 3 2 分钟 。 9. 笔直的跑道一旁插 着 5 1 面小旗,它们的间隔 是 2 m 。现在要改为只 插 2 6 面小旗(两端的旗子不动),间隔应改为多少米? 跑道的长度是: 解: 答:间隔应改 为 4 米。 2 × ( 5 1 −1 )= 100 ( 米) 间隔是: 100 ÷ ( 2 6 −1 )= 4 ( 米) 10. 解下列方程。 1 6+ x = 71 解: x = 7 1 − 16 x = 55 3(2 x − 4)=9 2 x − 4= 9 ÷3 2 x = 3 + 4 x = 7 ÷2 x = 3.5 解: 1. 4 x + 9. 2 x = 53 10. 6 x = 53 x = 53 ÷10.6 x = 5 1 8+7 x = 39 7 x = 3 9 − 18 x = 21 ÷7 x = 3 解: 解: 12. 3 x − 7. 5 x = 57.6 4. 8 x = 57.6 x = 57.6 ÷4.8 x = 12 (3 x − 7)÷5=16 3 x − 7= 16 ×5 3 x = 8 0 + 7 x = 87 ÷3 x = 29 解: 解: 11. 一张桌子 坐 6 人,两张桌子并起来 坐 1 0 人,三张桌子并起来 坐 1 4 人 …… 照这样, 1 0 张桌子并成一排可以坐多少人?如果一共 有 3 8 人,需要并多少张桌子才能坐下? 设需要并 x 张桌子才能坐下。 解: 10 × 4 + 2= 42 ( 人) 2+4 x = 38 4 x = 3 8 - 2 x = 9 答: 1 0 张桌子并称一排可以 坐 4 2 人, 3 8 人需要 并 9 张桌子。 12. 一条项链 长 6 0 cm ,每 隔 5 c m 有一颗水晶。这条项链上共有多少颗水晶? 解: 答:这条项链上共有 1 2 颗水晶。 60 ÷ 5 = 12 ( 颗) 13. 小区花园是一个 长 6 0 m 、 宽 4 0 m 的长方形。现在要在花园四周围栽树,四个角上都要栽,每相邻两棵间 隔 5 m 。一共要栽多少棵树? 解: 答:一共要 栽 4 0 棵树。 C 小区花园 =(60+40)×2=200 (米) 200 ÷ 5 = 40 ( 棵) 14 * . 围棋盘的最外层每边能 放 1 9 枚棋子。最外层一共可以摆放多少棋子? 1 7 枚 1 9 枚 解: 19×2+17×2 =38+34 =72 (枚) 方法一: 答:一共可以 摆 7 2 枚棋子。 1 8 枚 1 8 枚 解: 18 × 4= 72 (枚) 方法二: 答:一共可以 摆 7 2 枚棋子。 1 7 枚 1 7 枚 解: 17×4+4 =68+4 =72 (枚) 方法三: 答:一共可以 摆 7 2 枚棋子。 1 8 枚 1 8 枚 解: (1 9 − 1 ) × 4 = 18×4 = 72 (枚) 方法四: 答:一共可以 摆 7 2 枚棋子。 15 * . 为迎接“六一”儿童节,学校举行团体操表演。五年级学生排成下面的方阵,最外层每边 站 1 5 名学生,最外层一共有多少名学生?整个方阵一共有多少名学生? 可以看成是封闭路线上的植树问题,因此总人 数 = 总段数。 解: 最外层一共的学生有: (1 5 − 1 ) × 4= 56 (名) 整个方阵一共有学生: 15 ×1 5= 225 (名) 答:最外层一共 有 5 6 名学生, 整个方阵一共 有 22 5 名学生 。 三 课堂小结 解决复杂问题时,从 问题 入手 进行分析 更有助于问题的解决。 课后作业 1. 从课后习题中选取; 2. 完成练习册本课时的习题。查看更多