浙江专用2020高考数学二轮复习专题一集合常用逻辑用语函数与导数不等式第1讲集合常用逻辑用语专题强化训练
第1讲 集合、常用逻辑用语
专题强化训练
[基础达标]
1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RQ)=( )
A.[2,3] B.(-2,3]
C.[1,2) D.(-∞,-2]∪[1,+∞)
解析:选B.由于Q={x|x≤-2或x≥2},∁RQ={x|-2<x<2},故得P∪(∁RQ)={x|-2<x≤3}.故选B.
2.(2019·金华模拟)已知集合A={y|y=log2x,x>2},B={y|y=,x<1},则A∩B=( )
A.(1,+∞) B.
C. D.
解析:选A.法一:因为A={y|y=log2x,x>2}={y|y>1},B={y|y=,x<1}={y|y>},所以A∩B={y|y>1},故选A.
法二:取2∈A∩B,则由2∈A,得log2x=2,解得x=4>2,满足条件,同时由2∈B,得=2,x=-1,满足条件,排除选项B,D;取1∈A∩B,则由1∈A,得log2x=1,解得x=2,不满足x>2,排除C,故选A.
3.(2019·温州市统一模拟考试)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为( )
A.1 B.2
C.3 D.1或2
解析:选B.当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅,故a的值为2,选B.
4.(2019·湖北七市(州)协作体联考)已知a,b为两个非零向量,设命题p:|a·b|=|a||b|,命题q:a与b共线,则命题p是命题q成立的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选C.|a·b|=|a||b|⇔|a||b||cos〈a,b〉|=|a||b|⇔cos〈a,b〉=±1⇔a∥b,故是充要条件,选C.
5.(2019·衢州质检)已知全集U为R,集合A={x|x2<16},B={x|y=log3(x-4)},
- 11 -
则下列关系正确的是( )
A.A∪B=R B.A∪(∁UB)=R
C.(∁UA)∪B=R D.A∩(∁UB)=A
解析:选D.因为A={x|-4
4},
所以∁UB={x|x≤4},所以A∩(∁UB)=A,故选D.
6.“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )
A.m> B.0<m<1
C.m>0 D.m>1
解析:选C.若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m>0,故选C.
7.设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件
D.既不充分也不必要条件
解析:选C.由题意得,an=a1qn-1(a1>0),a2n-1+a2n=a1q2n-2+a1q2n-1=a1q2n-2(1+q).若q<0,因为1+q的符号不确定,所以无法判断a2n-1+a2n的符号;反之,若a2n-1+a2n<0,即a1q2n-2(1+q)<0,可得q<-1<0.故“q<0”是“对任意的正整数n,a2n-1+a2n<0”的必要而不充分条件,故选C.
8.下列命题中为真命题的是( )
A.命题“若x>1,则x2>1”的否命题
B.命题“若x>y,则x>|y|”的逆命题
C.命题“若x=1,则x2+x-2=0”的否命题
D.命题“若tan x=,则x=”的逆否命题
解析:选B.对于选项A,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故选项A为假命题;对于选项B,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知选项B为真命题;对于选项C,命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,故选项C为假命题;对于选项D,命题“若tan x=,则x=”的逆否命题为“若x≠,则tan x≠
- 11 -
eq
(3)”,易知当x=时,tan x=,故选项D为假命题.综上可知,选B.
9.(2019·浙江五校联考模拟)已知棱长为1的正方体ABCDA1B1C1D1中,下列命题不正确的是( )
A.平面ACB1∥平面A1C1D,且两平面的距离为
B.点P在线段AB上运动,则四面体PA1B1C1的体积不变
C.与所有12条棱都相切的球的体积为π
D.M是正方体的内切球的球面上任意一点,N是△AB1C外接圆的圆周上任意一点,则|MN|的最小值是
解析:选D.A.因为AB1∥DC1,AC∥A1C1,
且AC∩AB1=A,
所以平面ACB1∥平面A1C1D,
正方体的体对角线BD1=,
设B到平面ACB1的距离为h,
则VBAB1C=××1×1×1=××××h,即h=,
则平面ACB1与平面A1C1D的距离d=-2h=-2×=,故A正确.
B.点P在线段AB上运动,则四面体PA1B1C1的高为1,底面积不变,则体积不变,故B正确,
C.与所有12条棱都相切的球的直径2R等于面的对角线B1C=,则2R=,R=,则球的体积V=πR3=×π×()3=π,故C正确.
D.设正方体的内切球的球心为O,正方体的外接球的球心为O′,
则三角形ACB1的外接圆是正方体的外接球O′的一个小圆,
因为点M在正方体的内切球的球面上运动,点N在三角形ACB1的外接圆上运动,
所以线段MN长度的最小值是正方体的外接球的半径减去正方体的内切球的半径,
因为正方体ABCDA1B1C1D1的棱长为1,
- 11 -
所以线段MN长度的最小值是-.故D错误.故选D.
10.设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有( )
A.3个 B.4个
C.5个 D.6个
解析:选C.由36-x2>0可解得-63(x-m)”是“q:x2+3x-4<0”成立的必要不充分条件,则实数m的取值范围是________.
解析:记P={x|(x-m)2>3(x-m)}={x|(x-m)·(x-m-3)>0}={x|xm+3},Q={x|x2+3x-4<0}={x|(x+4)(x-1)<0}={x|-41;
④若Sn为数列{an}的前n项和,则此数列的通项公式an=Sn-Sn-1(n>1).
解析:命题①:由数列{an}是等差数列,设其公差为d,则an-an-1=d(n≥2)(ⅰ),又数列{an}是等比数列,设其公比为q,则an=qan-1(n≥2)(ⅱ),把(ⅱ)代入(ⅰ)得:qan-1-an-1=(q-1)an-1=d(n≥2),要使(q-1)·an-1=d(n≥2)对数列中“任意项”都成立,则需q-1=d=0,也就是q=1,d=0.
所以数列{an}为非零常数列,故不正确;
- 11 -
命题②:由正弦定理可把sin2A+sin2B=sin2C转化为a2+b2=c2,由余弦定理得
cos C==0,所以三角形为直角三角形,故正确;
命题③:若A、B是锐角三角形的两内角,
则tan A>0,tan B>0,π>A+B>,
则tan(A+B)=<0,
得tan A·tan B>1,故正确;
命题④:若Sn为数列{an}的前n项和,
则此数列的通项公式an=,故不正确.
故正确的命题为:②③.
答案:②③
- 11 -