- 2023-07-31 发布 |
- 37.5 KB |
- 91页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考理科数学试题及答案汇编
2016年全国各省市高考数学(理)试题及答案 试题类型: 2016年普通高等学校招生全国统一考试 卷3 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合S=,则ST= (A) [2,3] (B)(-,2][3,+) (C)[3,+) (D)(0,2][3,+) (2)若z=1+2i,则 (A)1 (B) -1 (C) i (D)-i (3)已知向量,则ABC= (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是 (A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个 (5)若,则 (A) (B) (C) 1 (D) (6)已知,,,则 (A) (B)(C)(D) (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n= (A)3 (B)4 (C)5 (D)6 (8)在中,,BC边上的高等于,则 (A)(B)(C)(D) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为 (A) (B) (C)90 (D)81 (10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是 (A)4π (B)(C)6π (D) (11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为 (A)(B)(C)(D) (12)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有 (A)18个 (B)16个 (C)14个 (D)12个 第II卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x,y满足约束条件 则z=x+y的最大值为_____________. (14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。 (15)已知f(x)为偶函数,当时,,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。 (16)已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若,则__________________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知数列的前n项和,,其中0 (I)证明是等比数列,并求其通项公式 (II)若 ,求 (18)(本小题满分12分) 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 (I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明 (II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。 (19)(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. (I)证明MN∥平面PAB; (II)求直线AN与平面PMN所成角的正弦值. (20)(本小题满分12分) 已知抛物线C:的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点. (I)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (21)(本小题满分12分) 设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记的最大值为A. (Ⅰ)求f'(x); (Ⅱ)求A; (Ⅲ)证明≤2A. 请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。 22.(本小题满分10分)选修4-1:几何证明选讲 如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点. (I)若∠PFB=2∠PCD,求∠PCD的大小; (II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD. 23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为 . (I)写出的普通方程和的直角坐标方程; (II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数 (I)当a=2时,求不等式的解集; (II)设函数当时,f(x)+g(x)≥3,求a的取值范围. 绝密★启封并使用完毕前 试题类型:新课标Ⅲ 2016年普通高等学校招生全国统一考试 理科数学正式答案 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1)D (2)C (3)A (4)D (5)A (6)A (7)B (8)C (9)B (10)B (11)A (12)C 第II卷 本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。 二、填空题:本大题共3小题,每小题5分 (13) (14) (15) (16)4 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 解:(Ⅰ)由题意得,故,,. 由,得,即.由,得,所以. 因此是首项为,公比为的等比数列,于是. (Ⅱ)由(Ⅰ)得,由得,即, 解得. (18)(本小题满分12分) 解:(Ⅰ)由折线图这数据和附注中参考数据得 ,,, , . 因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系. (Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. (19)(本小题满分12分) 解:(Ⅰ)由已知得,取的中点,连接,由为中点知,. 又,故平行且等于,四边形为平行四边形,于是. 因为平面,平面,所以平面. (Ⅱ)取的中点,连结,由得,从而,且. 以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,由题意知, ,,,, ,,. 设为平面的法向量,则,即,可取, 于是. (20)解:由题设.设,则,且 . 记过两点的直线为,则的方程为. .....3分 (Ⅰ)由于在线段上,故. 记的斜率为,的斜率为,则 . 所以. ......5分 (Ⅱ)设与轴的交点为, 则. 由题设可得,所以(舍去),. 设满足条件的的中点为. 当与轴不垂直时,由可得. 而,所以. 当与轴垂直时,与重合.所以,所求轨迹方程为. ....12分 (21)(本小题满分12分) 解:(Ⅰ). (Ⅱ)当时, 因此,. ………4分 当时,将变形为. 令,则是在上的最大值,,,且当时,取得极小值,极小值为. 令,解得(舍去),. (ⅰ)当时,在内无极值点,,,,所以. (ⅱ)当时,由,知. 又,所以. 综上,. ………9分 (Ⅲ)由(Ⅰ)得. 当时,. 当时,,所以. 当时,,所以. 请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。 22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)连结,则. 因为,所以,又,所以. 又,所以,因此. (Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此. 23.(本小题满分10分)选修4-4:坐标系与参数方程 解:(Ⅰ)的普通方程为,的直角坐标方程为. ……5分 (Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值, 即为到的距离的最小值, . ………………8分 当且仅当时,取得最小值,最小值为,此时的直角坐标为. ………………10分 24.(本小题满分10分)选修4-5:不等式选讲 解:(Ⅰ)当时,. 解不等式,得. 因此,的解集为. ………………5分 (Ⅱ)当时, , 当时等号成立, 所以当时,等价于. ①……7分 当时,①等价于,无解. 当时,①等价于,解得. 所以的取值范围是. ………………10分 2016年普通高等学校招生全国统一考试 卷2 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。 2. 选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。 5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知在复平面内对应的点在第四象限,则实数m的取值范围是 (A)(B)(C)(D) (2)已知集合,,则 (A)(B)(C)(D) (3)已知向量,且,则m= (A)-8(B)-6 (C)6 (D)8 (4)圆的圆心到直线 的距离为1,则a= (A)(B)(C)(D)2 (5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A)24 (B)18 (C)12 (D)9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A)20π (B)24π (C)28π (D)32π (7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为 (A)x= (kZ) (B)x= (kZ) (C)x= (kZ) (D)x= (kZ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s= (A)7 (B)12 (C)17 (D)34 (9)若cos(–α)=,则sin 2α= (A)(B)(C) (D) (10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为 (A) (B) (C) (D) (11)已知F1,F2是双曲线E的左,右焦点,点M在E上,M F1与轴垂直,sin,则E的离心率为 (A) (B) (C) (D)2 (12)已知函数满足,若函数与图像的交点为,···,(),则 (A)0 (B)m (C)2m (D)4m 第II卷 本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分。 (13)△ABC的内角A、B、C的对边分别为a、b、c,若cos A=,cos C=,a=1,则b=. (14)α、β是两个平面,m、n是两条直线,有下列四个命题: (1)如果m⊥n,m⊥α,n∥β,那么α⊥β. (2)如果m⊥α,n∥α,那么m⊥n. (3)如果α∥β,mα,那么m∥β. (4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等. 其中正确的命题有。(填写所有正确命题的编号) (15)有三张卡片,分别写有1和2,1和3,2和3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。 (16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=。 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分) Sn为等差数列的前n项和,且=1 ,=28 记,其中表示不超过x的最大整数,如[0.9] = 0,[lg99]=1。 (I)求,,; (II)求数列的前1 000项和. (18)(本题满分12分) 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 5 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 5 概率 0.30 0.15 0.20 0.20 0.10 0. 05 (I)求一续保人本年度的保费高于基本保费的概率; (II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (III)求续保人本年度的平均保费与基本保费的比值. (19)(本小题满分12分) 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,. (I)证明:平面ABCD; (II)求二面角的正弦值. (20)(本小题满分12分) 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (I)当t=4,时,求△AMN的面积; (II)当时,求k的取值范围. (21)(本小题满分12分) (I)讨论函数的单调性,并证明当>0时, (II)证明:当时,函数有最小值.设g(x)的最小值为,求函数的值域. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:集合证明选讲 如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (I) 证明:B,C,G,F四点共圆; (II)若AB=1,E为DA的中点,求四边形BCGF的面积. (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25. (I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (II)直线l的参数方程是 (t为参数),l与C交于A、B两点, ∣AB∣=,求l的斜率。 (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)= ∣x-∣+∣x+∣,M为不等式f(x) <2的解集. (I)求M; (II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。 2016年普通高等学校招生全国统一考试 理科数学答案 第Ⅰ卷 一.选择题: (1)【答案】A (2)【答案】C (3)【答案】D (4)【答案】A (5)【答案】B (6)【答案】C (7)【答案】B (8)【答案】C (9)【答案】D (10)【答案】C (11)【答案】A (12)【答案】C 第Ⅱ卷 二、填空题 (13)【答案】 (14) 【答案】②③④ (15)【答案】1和3 (16)【答案】 三.解答题 17.(本题满分12分) 【答案】(Ⅰ),,;(Ⅱ)1893. 【解析】 试题分析:(Ⅰ)先求公差、通项,再根据已知条件求;(Ⅱ)用分段函数表示,再由等差数列的前项和公式求数列的前1 000项和. 试题解析:(Ⅰ)设的公差为,据已知有,解得 所以的通项公式为 (Ⅱ)因为 所以数列的前项和为 考点:等差数列的的性质,前项和公式,对数的运算. 【结束】 18.(本题满分12分) 【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为,求的分布列为,在根据期望公式求解.. 【解析】 试题分析: 试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故 (Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故 又,故 因此所求概率为 (Ⅲ)记续保人本年度的保费为,则的分布列为 因此续保人本年度的平均保费与基本保费的比值为 考点: 条件概率,随机变量的分布列、期望. 【结束】 19.(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)证,再证,最后证;(Ⅱ)用向量法求解. 试题解析:(I)由已知得,,又由得,故. 因此,从而.由,得. 由得.所以,. 于是,, 故. 又,而, 所以. (II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是, .因此二面角的正弦值是. 考点:线面垂直的判定、二面角. 【结束】 20.(本小题满分12分) 【答案】(Ⅰ);(Ⅱ). 【解析】 试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求 的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求. 试题解析:(I)设,则由题意知,当时,的方程为,. 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以. 因此的面积. (II)由题意,,. 将直线的方程代入得. 由得,故. 由题设,直线的方程为,故同理可得, 由得,即. 当时上式不成立, 因此.等价于, 即.由此得,或,解得. 因此的取值范围是. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】 (21)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,当时,证明结论;(Ⅱ)用导数法求函数的最值,在构造新函数,又用导数法求解. 试题解析:(Ⅰ)的定义域为. 且仅当时,,所以在单调递增, 因此当时, 所以 (II) 由(I)知,单调递增,对任意 因此,存在唯一使得即, 当时,单调递减; 当时,单调递增. 因此在处取得最小值,最小值为 于是,由单调递增 所以,由得 因为单调递增,对任意存在唯一的 使得所以的值域是 综上,当时,有,的值域是 考点: 函数的单调性、极值与最值. 【结束】 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 试题分析:(Ⅰ)证再证四点共圆;(Ⅱ)证明四边形的面积是面积的2倍. 试题解析:(I)因为,所以 则有 所以由此可得 由此所以四点共圆. (II)由四点共圆,知,连结, 由为斜边的中点,知,故 因此四边形的面积是面积的2倍,即 考点: 三角形相似、全等,四点共圆 【结束】 (23)(本小题满分10分)选修4—4:坐标系与参数方程 【答案】(Ⅰ);(Ⅱ). 【解析】 试题分析:(I)利用,可得C的极坐标方程;(II)先将直线的参数方程化为普通方程,再利用弦长公式可得的斜率. 试题解析:(I)由可得的极坐标方程 (II)在(I)中建立的极坐标系中,直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 由得, 所以的斜率为或. 考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式. 【结束】 (24)(本小题满分10分)选修4—5:不等式选讲 【答案】(Ⅰ);(Ⅱ)详见解析. 【解析】 试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,. 试题解析:(I) 当时,由得解得; 当时,; 当时,由得解得. 所以的解集. (II)由(I)知,当时,,从而 , 因此 考点:绝对值不等式,不等式的证明. 【结束】 www.ks5u.com 试题类型:A 2016年普通高等学校招生全国统一考试 卷1 理科数学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,,则 (A)(B)(C)(D) (2)设,其中x,y是实数,则 (A)1 (B)(C)(D)2 (3)已知等差数列前9项的和为27,,则 (A)100 (B)99(C)98(D)97 (4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A)(B)(C) (D) (5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是 (A)(–1,3) (B)(–1,) (C)(0,3) (D)(0,) (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (A)17π (B)18π (C)20π (D)28π (7)函数y=2x2–e|x|在[–2,2]的图像大致为 (A)(B) (C)(D) (8)若,则 (A)(B) (C)(D) (9)执行右面的程序图,如果输入的,则输出x,y的值满足 (A)(B)(C)(D) (10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 (11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,平面=n,则m、n所成角的正弦值为 (A) (B) (C) (D) 12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为 (A)11 (B)9 (C)7 (D)5 第II卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分 (13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=. (14)的展开式中,x3的系数是. (用数字填写答案) (15)设等比数列满足满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为。 (16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。学.科网该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元。 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本题满分为12分) 的内角A,B,C的对边分别别为a,b,c,已知 (I)求C; (II)若的面积为,求的周长. (18)(本题满分为12分) 如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是. (I)证明;平面ABEF平面EFDC; (II)求二面角E-BC-A的余弦值. (19)(本小题满分12分) 某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数. (I)求的分布列; (II)若要求,确定的最小值; (III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个? 20. (本小题满分12分) 设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (I)证明为定值,并写出点E的轨迹方程; (II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. (21)(本小题满分12分) 已知函数有两个零点. (I)求a的取值范围; (II)设x1,x2是的两个零点,证明:+x2<2. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆. (I)证明:直线AB与⊙O相切 (II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD. (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0) 。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ. (I)说明C1是哪种曲线,并将C1的方程化为极坐标方程; (II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a。 (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)= ∣x+1∣-∣2x-3∣. (I)在答题卡第(24)题图中画出y= f(x)的图像; (II)求不等式∣f(x)∣﹥1的解集。 2016年普通高等学校招生全国统一考试 理科数学参考答案 一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)D(2)B(3)C(4)B(5)A(6)A (7)D(8)C(9)C(10)B(11)A(12)B 二、填空题:本大题共4小题,每小题5分 (13) (14)10 (15)64 (16) 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分为12分) 解:(I)由已知及正弦定理得,, 即. 故. 可得,所以. (II)由已知,. 又,所以. 由已知及余弦定理得,. 故,从而. 所以的周长为. (18)(本小题满分为12分) 解:(I)由已知可得,,所以平面. 又平面,故平面平面. (II)过作,垂足为,由(I)知平面. 以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系. 由(I)知为二面角的平面角,故,则,,可得,,,. 由已知,,所以平面. 又平面平面,故,. 由,可得平面,所以为二面角的平面角, .从而可得. 所以,,,. 设是平面的法向量,则 ,即, 所以可取. 设是平面的法向量,则, 同理可取.则. 故二面角的余弦值为. (19)(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 ; ; ; ; ; ; . 所以的分布列为 16 17 18 19 20 21 22 (Ⅱ)由(Ⅰ)知,,故的最小值为19. (Ⅲ)记表示2台机器在购买易损零件上所需的费用(单位:元). 当时, . 当时, . 可知当时所需费用的期望值小于时所需费用的期望值,故应选. 20.(本小题满分12分) 解:(Ⅰ)因为,,故, 所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). (Ⅱ)当与轴不垂直时,设的方程为,,. 由得. 则,. 所以. 过点且与垂直的直线:,到的距离为,所以 .故四边形的面积 . 可得当与轴不垂直时,四边形面积的取值范围为. 当与轴垂直时,其方程为,,,四边形的面积为12. 综上,四边形面积的取值范围为. (21)(本小题满分12分) 解:(Ⅰ). (i)设,则,只有一个零点. (ii)设,则当时,;当时,.所以在上单调递减,在上单调递增. 又,,取满足且,则 , 故存在两个零点. (iii)设,由得或. 若,则,故当时,,因此在 上单调递增.又当时,,所以不存在两个零点. 若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点. 综上,的取值范围为. (Ⅱ)不妨设,由(Ⅰ)知,,在上单调递减,所以等价于,即. 由于,而,所以 . 设,则. 所以当时,,而,故当时,. 从而,故. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设是的中点,连结, 因为,所以,. 在中,,即到直线的距离等于圆的半径,所以直线与⊙相切. (Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线. 由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以. 同理可证,.所以. (23)(本小题满分10分) 解:⑴ (均为参数) ∴① ∴为以为圆心,为半径的圆.方程为 ∵ ∴ 即为的极坐标方程 ⑵ 两边同乘得 即② :化为普通方程为 由题意:和的公共方程所在直线即为 ①—②得:,即为 ∴ ∴ (24)(本小题满分10分) 解:⑴ 如图所示: ⑵ 当,,解得或 当,,解得或 或 当,,解得或 或 综上,或或 ,解集为 2016年普通高等学校招生全国统一考试(天津卷) 数 学(理工类) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至3页,第Ⅱ卷4至6页。 答卷前,考生务必将自己的姓名、准考证 号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利! 第I卷 注意事项: 1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。 2.本卷共8小题,每小题5分,共40分 参考公式: 如果事件 A,B 互斥,那么·如果事件 A,B 相互独立, P(A∪B)=P(A)+P(B).P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh锥体的体积公式V = V=1/3Sh 其中 S 表示柱体的底面积其中 S 表示锥体的底面积, h 表示柱体的高.h 表示锥体的高. 第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合则= (A)(B)(C)(D) (2)设变量x,y满足约束条件则目标函数的最小值为 (A)(B)6(C)10(D)17 (3)在△ABC中,若,BC=3, ,则AC= (A)1(B)2(C)3(D)4 (4)阅读右边的程序框图,运行相应的程序,则输出S的值为 (A)2(B)4 (C)6(D)8 (5)设{an}是首项为正数的等比数列,公比为q,则“q <0”是“对任意的正整数n,a2n−1+a2n<0”的 (A)充要条件(B)充分而不必要条件 (C)必要而不充分条件(D)既不充分也不必要条件 (6)已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为 (A)(B)(C)(D) (7)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则的值为 (A)(B)(C)(D) (8)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程│f(x)│=2x恰好有两个不相等的实数解,则a的取值范围是 (A)(0,] (B)[,] (C)[,]{}(D)[,){} 第II卷 注意事项: 1、用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2、本卷共12小题,共计110分. 二、填空题:本大题共6小题,每小题5分,共30分. (9)已知,i是虚数单位,若(1+i)(1-bi)=a,则的值为_______. (10)的展开式中的系数为__________.(用数字作答) (11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3. (第11题图) (12)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________. (13)已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是______. (14)设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) 已知函数f(x)=4tanxsin()cos()—. (Ⅰ)求f(x)的定义域与最小正周期; (Ⅱ)讨论f(x)在区间[]上的单调性. (16)(本小题满分13分) 某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,. 现从这10人中随机选出2人作为该组代表参加座谈会. (I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率; (II)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望. (17)(本小题满分13分) 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (I)求证:EG∥平面ADF; (II)求二面角O-EF-C的正弦值; (III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. (18)(本小题满分13分) 已知{}是各项均为正数的等差数列,公差为d。对任意的n,是和的等比中项。 (I)设=,n,求证:数列{}是等差数列; (II)设=d,T=,n,求证:<. (19)(本小题满分14分) 设椭圆+=1(>)的右焦点为F,右顶点为A.已知,其中O为原点,e为椭圆的离心率。 (I)求椭圆的方程; (II)设过点A的直线l与椭圆交于点B(点B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA∠MAO,求直线l的斜率的取值范围。 (20)(本小题满分14分) 设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。 (I)求f(x)的单调区间; (II)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3; (III)设a>0,函数g(x)=∣f(x)∣,求证:g(x)在区间[0,2]上的最大值不小于. 2016年普通高等学校招生全国统一考试(四川卷) 数学(理工类) 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个是符合题目要求的。 1. 设集合,Z为整数集,则A∩Z中元素的个数是 (A)3 (B)4 (C)5 (D)6 2. 设i为虚数单位,则的展开式中含x4的项为 (A)-15x4(B)15x4(C)-20i x4(D)20i x4 3. 为了得到函数的图象,只需把函数的图象上所有的点 (A)向左平行移动个单位长度(B)向右平行移动个单位长度 (C)向左平行移动个单位长度(D)向右平行移动个单位长度 4. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 (A)24(B)48(C)60(D)72 5. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) (A)2018年(B)2019年(C)2020年(D)2021年 6. 秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为 (A)9 (B)18 (C)20 (D)35 7. 设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足则p是q的 (A)必要不充分条件(B)充分不必要条件(C)充要条件(D)既不充分也不必要条件 8. 设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为 (A)(B)(C)(D)1 9. 设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是 (A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,+∞) 10. 在平面内,定点A,B,C,D满足== , ﹒=﹒=﹒=-2,动点P,M满足=1,=,则的最大值是 (A)(B)(C)(D) 第Ⅱ卷(非选择题 共100分) 二、填空题:本大题共5小题,每小题5分,共25分。 11. cos2–sin2=. 12. 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是. 13. 已知三棱镜的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是. 14. 已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=,则f(-) + f(1)=______. 15. 在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为; 当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题: ①若点A的“伴随点”是点,则点的“伴随点”是点A ②单位圆的“伴随曲线”是它自身; ③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称; ④一条直线的“伴随曲线”是一条直线. 其中的真命题是_____________(写出所有真命题的序列). 三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。 16.(本小题满分12分) 我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图. (I)求直方图中a的值; (II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由. 17.(本小题满分12分) 在△ABC中,角A,B,C所对的边分别是a,b,c,且. (I)证明:; (II)若,求. 18.(本小题满分12分) 如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90° (I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由; (II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值. 19.(本小题满分12分) 已知数列{}的首项为1,为数列{}的前n项和,,其中q>0,. (I)若成等差数列,求an的通项公式; (ii)设双曲线的离心率为,且,证明:. 20.(本小题满分13分) 已知椭圆E:(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T. (I)求椭圆E的方程及点T的坐标; (II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值. 21.(本小题满分14分) 设函数f(x)=ax2-a-lnx,其中a ∈R. (I)讨论f(x)的单调性; (II)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。 2016年普通高等学校招生全国统一考试(四川卷) 数学(理工类)试题参考答案 一、选择题 1.C 2.A 3.D 4.D 5.B 6.B 7.A 8.C 9.A 10.B 二、填空题 11. 12. 13. 14.–2 15.②③ 三、解答题 16.(本小题满分12分) (Ⅰ)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04, 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02. 由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1, 解得a=0.30. (Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为 300 000×0.12=36 000. (Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85, 而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85, 所以2.5≤x<3. 由0.3×(x–2.5)=0.85–0.73, 解得x=2.9. 所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 17.(本小题满分12分) (Ⅰ)根据正弦定理,可设===k(k>0). 则a=ksin A,b=ksin B,c=ksin C. 代入+=中,有 +=,变形可得 sin Asin B=sin Acos B+cos Asin B=sin(A+B). 在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C, 所以sin Asin B=sin C. (Ⅱ)由已知,b2+c2–a2=bc,根据余弦定理,有 cos A==. 所以sin A==. 由(Ⅰ),sin Asin B=sin Acos B+cos Asin B, 所以sin B=cos B+sin B, 故tan B==4. 18. (本小题满分12分) (Ⅰ)在梯形ABCD中,AB与CD不平行. 延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下: 由已知,BC∥ED,且BC=ED. 所以四边形BCDE是平行四边形. 从而CM∥EB. 又EB平面PBE,CM平面PBE, 所以CM∥平面PBE. (说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点) (Ⅱ)方法一: 由已知,CD⊥PA,CD⊥AD,PAAD=A, 所以CD⊥平面PAD. 从而CD⊥PD. 所以PDA是二面角P-CD-A的平面角. 所以PDA=45°. 设BC=1,则在Rt△PAD中,PA=AD=2. 过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD, 从而PA⊥CE. 于是CE⊥平面PAH. 所以平面PCE⊥平面PAH. 过A作AQ⊥PH于Q,则AQ⊥平面PCE. 所以APH是PA与平面PCE所成的角. 在Rt△AEH中,AEH=45°,AE=1, 所以AH=. 在Rt△PAH中,PH==, 所以sinAPH==. 方法二: 由已知,CD⊥PA,CD⊥AD,PAAD=A, 所以CD⊥平面PAD. 于是CD⊥PD. 从而PDA是二面角P-CD-A的平面角. 所以PDA=45°. 由PA⊥AB,可得PA⊥平面ABCD. 设BC=1,则在Rt△PAD中,PA=AD=2. 作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系 A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0), 所以=(1,0,-2),=(1,1,0),=(0,0,2) 设平面PCE的法向量为n=(x,y,z), 由得设x=2,解得n=(2,-2,1). 设直线PA与平面PCE所成角为α,则sinα==. 所以直线PA与平面PCE所成角的正弦值为. 19.(本小题满分12分) (Ⅰ)由已知, 两式相减得到. 又由得到,故对所有都成立. 所以,数列是首项为1,公比为q的等比数列. 从而. 由成等比数列,可得,即,则, 由已知,,故 . 所以. (Ⅱ)由(Ⅰ)可知,. 所以双曲线的离心率 . 由解得. 因为,所以. 于是, 故. 20.(本小题满分13分) (I)由已知,,则椭圆E的方程为. 有方程组 得.① 方程①的判别式为,由,得, 此方程①的解为, 所以椭圆E的方程为. 点T坐标为(2,1). (II)由已知可设直线的方程为, 有方程组 可得 所以P点坐标为(),. 设点A,B的坐标分别为. 由方程组 可得.② 方程②的判别式为,由,解得. 由②得. 所以, 同理, 所以 . 故存在常数,使得. 21.(本小题满分14分) (I) <0,在内单调递减. 由=0,有. 此时,当时,<0,单调递减; 当时,>0,单调递增. (II)令=,=. 则=. 而当时,>0, 所以在区间内单调递增. 又由=0,有>0, 从而当时,>0. 当,时,=. 故当>在区间内恒成立时,必有. 当时,>1. 由(I)有,从而, 所以此时>在区间内不恒成立. 当时,令, 当时,, 因此,在区间单调递增. 又因为,所以当时, ,即 恒成立. 综上, www.ks5u.com 2016年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、设x,则不等式的解集为______________________ 2、设,期中为虚数单位,则=______________________ 3、已知平行直线,则的距离_______________ 4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米) 5、已知点在函数的图像上,则 6、如图,在正四棱柱中,底面的边长为3,与底面所成角的大小为,则该正四棱柱的高等于____________ 7、方程在区间上的解为___________ 8、在的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 9、已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设若关于的方程组无解,则的取值范围是____________ 一. 无穷数列由k个不同的数组成,为的前n项和.若对任意,,则k的最大值为. 二. 在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是. 三. 设,若对任意实数都有,则满足条件的有序实数组的组数为. 四. 如图,在平面直角坐标系中,O为正八边形的中心,.任取不同的两点,点P满足,则点P落在第一象限的概率是. 一、 选择题(5×4=20) 15. 设,则“”是“”的( ) (A) 充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分也非必要条件 16. 下列极坐标方程中,对应的曲线为右图的是( ) (A) (B) (C) (D) 17. 已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是( ) (A) (B) (C) (D) 18、设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( ) 、①和②均为真命题、①和②均为假命题 、①为真命题,②为假命题、①为假命题,②为真命题 学科.网 三、解答题(74分) 19.将边长为1的正方形(及其内部)绕的旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧。 (1)求三棱锥的体积;学.科网 (2)求异面直线与所成的角的大小。 20、 (本题满分14) 有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到 点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图 (1) 求菜地内的分界线的方程 (2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 双曲线的左、右焦点分别为,直线过且与双曲线交于两点。 (1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程; (2)设,若的斜率存在,且,求的斜率. 学科&网 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知,函数. (1)当时,解不等式; (2)若关于的方程的解集中恰好有一个元素,求的取值范围; (3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围. 23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 若无穷数列满足:只要,必有,则称具有性质. (1)若具有性质,且,,求; (2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,判断是否具有性质,并说明理由; (3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”. 2016年普通高等学校招生全国统一考试(山东卷) 理科数学 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。满分150分。考试用时120分钟。考试结束后,将将本试卷和答题卡一并交回。 注意事项: 1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。答案写在试卷上无效。 3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。 4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 如果事件A,B互斥,那么P(A+B)=P(A)+P(B). 第Ⅰ卷(共50分) 一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的 (1)若复数z满足其中i为虚数单位,则z= (A)1+2i(B)12i(C)(D) (2)设集合则= (A)(B)(C)(D) (3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为 .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A)56(B)60 (C)120(D)140 (4)若变量x,y满足则的最大值是 (A)4 (B)9 (C)10 (D)12 (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为 (A)(B)(C)(D) (6)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的 (A)充分不必要条件(B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件 (7)函数f(x)=(sinx+cosx)(cosx –sinx)的最小正周期是 (A)(B)π (C)(D)2π (8)已知非零向量m,n满足4│m│=3│n│,cos查看更多