- 2021-06-23 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2012年北京高考试题(理数解析版)
2012年普通高等学校招生全国统一考试(北京卷) 数学(理科) 【整理】佛山市三水区华侨中学 骆方祥 本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回. 第一部分(选择题共40分) 一、选择题共8小题。每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项. 1.已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B= A (-,-1)B (-1,-) C (-,3)D (3,+) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。因为,利用二次不等式可得或画出数轴易得:.故选D. 【答案】D 2.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A) (B) (C) (D) 【解析】题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D。 【答案】D 3.设a,b∈R。“a=0”是“复数a+bi是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B。 【答案】B 4.执行如图所示的程序框图,输出的S值为( ) A. 2 B .4 C.8 D. 16 【解析】,,,,,循环结束,输出的s为8,故选C。 【答案】 5.如图. ∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则( ) A. CE·CB=AD·DB B. CE·CB=AD·AB C. AD·AB=CD ² D.CE·EB=CD ² 【解析】在中,∠ACB=90º,CD⊥AB于点D,所以,由切割线定理的,所以CE·CB=AD·DB。 【答案】A 6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A. 24 B. 18 C. 12 D. 6 【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。 【答案】B 7.某三棱锥的三视图如图所示,该三梭锥的表面积是( ) A. 28+6 B. 30+6 C. 56+ 12 D. 60+12 【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得: ,,,,因此该几何体表面积,故选B。 【答案】B 8.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( ) A.5 B.7 C.9 D.11 【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C。 【答案】C 第二部分(非选择题共110分) 二.填空题共6小题。每小题5分。共30分. 9.直线为参数)与曲线为参数)的交点个数为______。 【解析】直线的普通方程,圆的普通方程为,可以直线圆相交,故有2个交点。 【答案】2 10.已知等差数列为其前n项和。若,,则=_______。 【解析】因为, 所以,。 【答案】, 11.在△ABC中,若=2,b+c=7,cosB=,则b=_______。 【解析】在△ABC中,利用余弦定理 ,化简得:,与题目条件联立,可解得 【答案】4 12.在直角坐标系xOy中,直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60º.则△OAF的面积为 【解析】由可求得焦点坐标F(1,0),因为倾斜角为,所以直线的斜率为,利用点斜式,直线方程为,将直线和曲线联立,因此. 【答案】 13.已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________,的最大值为______。 【解析】根据平面向量的数量积公式,由图可知,,因此, ,而就是向量在边上的射影,要想让最大,即让射影最大,此时E点与B点重合,射影为,所以长度为1. 【答案】1,1 14.已知,,若同时满足条件: ①,或; ②, 。 则m的取值范围是_______。 【解析】根据,可解得。由于题目中第一个条件的限制,或成立的限制,导致在时必须是的。当时,不能做到在时,所以舍掉。因此,作为二次函数开口只能向下,故,且此时两个根为,。为保证此条件成立,需要,和大前提取交集结果为;又由于条件2:要求,0的限制,可分析得出在时,恒负,因此就需要在这个范围内有得正数的可能,即应该比两根中小的那个大,当时,,解得,交集为空,舍。当时,两个根同为,舍。当时,,解得,综上所述. 【答案】(lbylfx) 三、解答题公6小题,共80分。解答应写出文字说明,演算步骤或证明过程。 15.(本小题共13分) 已知函数。 (1)求的定义域及最小正周期; (2)求的单调递增区间。 解(1):得:函数的定义域为 得:的最小正周期为; (2)函数的单调递增区间为 则 得:的单调递增区间为 16.(本小题共14分) 如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2. (I)求证:A1C⊥平面BCDE; (II)若M是A1D的中点,求CM与平面A1BE所成角的大小; (III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由 解:(1), 平面, 又平面, 又, 平面。 (2)如图建系,则,,, ∴, 设平面法向量为 则 ∴ ∴ ∴ 又∵ ∴ ∴, ∴与平面所成角的大小。 (3)设线段上存在点,设点坐标为,则 则, 设平面法向量为, 则 ∴ ∴。 假设平面与平面垂直, 则,∴,,, ∵,∴不存在线段上存在点,使平面与平面垂直。 17.(本小题共13分) 近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱 厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾 20 20 60 (Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误额概率; (Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a>0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。 (注:,其中为数据的平均数) 解:(1)由题意可知:。 (2)由题意可知:。 (3)由题意可知:,因此有当,,时,有 . 18.(本小题共13分) 已知函数,. (1)若曲线与曲线在它们的交点处具有公共切线,求,的值; (2)当时,求函数的单调区间,并求其在区间上的最大值. 解:(1)由为公共切点可得: ,则,, ,则,, ① 又,, ,即,代入①式可得:. (2),设 则,令,解得:,; ,, 原函数在单调递增,在单调递减,在上单调递增 ①若,即时,最大值为; ②若,即时,最大值为 ③若时,即时,最大值为. 综上所述: 当时,最大值为;当时,最大值为. 19.(本小题共14分) 已知曲线. (1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,曲线与轴的交点为,(点位于点的上方),直线与 曲线交于不同的两点,,直线与直线交于点,求证:,, 三点共线. 解:(1)原曲线方程可化简得: 由题意可得:,解得: (2)由已知直线代入椭圆方程化简得:, ,解得: 由韦达定理得:①,,② 设,, 方程为:,则, ,, 欲证三点共线,只需证,共线 即成立,化简得: 将①②代入易知等式成立,则三点共线得证。(lby lfx) 20.(本小题共13分) 设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零. 记为所有这样的数表组成的集合. 对于,记为的第行各数之和(),为的第列各数之和();记为,,…,,,,…,中的最小值. (1)对如下数表,求的值; (2)设数表形如 求的最大值; (3)给定正整数,对于所有的,求的最大值. 解:(1)由题意可知,,,, ∴ (2)先用反证法证明: 若 则,∴ 同理可知,∴ 由题目所有数和为 即 ∴ 与题目条件矛盾 ∴. 易知当时,存在 ∴的最大值为1 (3)的最大值为. 首先构造满足的: , . 经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且 , , . 下面证明是最大值. 若不然,则存在一个数表,使得. 由的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中. 由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于. 设中有列的列和为正,有列的列和为负,由对称性不妨设,则. 另外,由对称性不妨设的第一行行和为正,第二行行和为负. 考虑的第一行,由前面结论知的第一行有不超过个正数和不少于个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于(即每个负数均不超过). 因此 , 故的第一行行和的绝对值小于,与假设矛盾. 因此的最大值为。(lby lfx)查看更多