2020九年级数学上册 第二十一章 一元二次方程 21

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020九年级数学上册 第二十一章 一元二次方程 21

‎21. 1一元二次方程 ‎1、判断题:(打“√”或“×”)‎ ‎(1) +2x-77=0是一元二次方程.( )‎ ‎(2) x2=0是一元二次方程.( )‎ ‎(3) x2-3y+2=0是一元二次方程.( )‎ ‎(4) x2-4x-5=0的二次项系数是0,一次项系数是-4,常数项是-5.( )‎ ‎(5) x2-2x-3=0的解是3或1.( )‎ ‎2.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.‎ ‎(1)5x2=3x;‎ ‎(2)(﹣1)x+x2﹣3=0;‎ ‎(3)(7x﹣1)2﹣3=0;‎ ‎(4)(﹣1)(+1)=0;‎ ‎(5)(6m﹣5)(2m+1)=m2.‎ ‎3.已知关于x的方程(m﹣1)x2+5x+m2﹣‎3m+2=0的常数项为0,‎ ‎(1)求m的值;‎ ‎(2)求方程的解.‎ 5‎ ‎4.已知,下列关于x的一元二次方程 ‎(1)x2﹣1=0 (2)x2+x﹣2=0 (3)x2+2x﹣3=0 …(n)x2+(n﹣1)x﹣n=0‎ ‎(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.‎ ‎(2)请指出上述几个方程的根有什么共同特点,写出一条即可.‎ ‎5. 方程(‎2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?‎ ‎6. 已知关于x的方程(m+2)x|m|+3x+m=0是一元二次方程,求此一元二次方程.‎ ‎7.下面哪些数是方程x2 - x-6=0的根?‎ ‎-4,-3,-2,-1,0,1,2,3,4‎ ‎8. 已知x=2是关于x的方程的一个根,求‎2a-1的值。‎ 5‎ 5‎ ‎参考答案 ‎1. × √ × × ×‎ ‎2.解:(1)方程整理得:5x2﹣3x=0,‎ 二次项系数为5,一次项系数为﹣3,常数项为0;‎ ‎(2)x2+(﹣1)x﹣3=0,‎ 二次项系数为1,一次项系数为﹣1,常数项为﹣3;‎ ‎(3)方程整理得:49x2﹣14x﹣2=0,‎ 二次项系数为49,一次项为﹣14,常数项为﹣2;‎ ‎(4)方程整理得:x2﹣1=0,‎ 二次项系数为,一次项系数为0,常数项为﹣1;‎ ‎(5)方程整理得:11m2﹣4m﹣5=0,‎ 二次项系数为11,一次项系数为﹣4,常数项为﹣5.‎ ‎3.解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣‎3m+2=0的常数项为0,‎ ‎∴m2﹣3m+2=0,‎ 解得:m1=1,m2=2,‎ ‎∴m的值为1或2;‎ ‎(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:‎ x2+5x=0‎ x(x+5)=0,‎ 解得:x1=0,x2=﹣5.‎ 当m=1时,5x=0,‎ 解得x=0.‎ ‎4.解:(1)(1)x2﹣1=0,‎ ‎(x+1)(x﹣1)=0,‎ x+1=0,或x﹣1=0,‎ 解得x1=﹣1,x2=1;‎ ‎(2)x2+x﹣2=0,‎ ‎(x+2)(x﹣1)=0,‎ x+2=0,或x﹣1=0,‎ 5‎ 解得x1=﹣2,x2=1;‎ ‎(3)x2+2x﹣3=0,‎ ‎(x+3)(x﹣1)=0,‎ x+3=0,或x﹣1=0,‎ 解得x1=﹣3,x2=1;‎ ‎…‎ 猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;‎ ‎(2)上述几个方程都有一个公共根是1.‎ ‎5. 当a≠2时是一元二次方程;当 a=2,b≠0时是一元一次方程。‎ ‎6. 由题意有|m|=2且m+2≠0,‎ ‎  ∴m=2,‎ 因此原一元二次方程为4x²+3x+2=0.‎ ‎7.-2 3 ‎ ‎8. ‎2a-1=5‎ 5‎
查看更多

相关文章

您可能关注的文档