- 2021-06-19 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习教案: 对数与对数函数
对数与对数函数 主标题:对数与对数函数 副标题:为学生详细的分析对数与对数函数的高考考点、命题方向以及规律总结。 关键词:对数,对数函数 难度:3 重要程度:5 考点剖析: 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用; 2.理解对数函数的概念及其单调性,掌握对数函数的图象通过的特殊点,会画底数为2,10,的对数函数的图象; 3.体会对数函数是一类重要的函数模型; 4.了解指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数. 命题方向:高考对该部分的考查多与函数的基本性质相结合综合命题,涉及函数的奇偶性、单调性、零点问题,函数值的求解,函数图象的识别等问题,考查学生分析、解决问题的能力. 规律总结:(1)研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,要注意底数a>1和0<a<1的两种不同情况.有些复杂的问题,借助于函数图象来解决,就变得简单了,这是数形结合思想的重要体现. (2)利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决. 知 识 梳 理 1.对数的概念 如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数. 2.对数的性质与运算法则 (1)对数的性质 几个恒等式(M,N,a,b都是正数,且a,b≠1) ①=N;②logaaN=N;③logbN=;④= logab;⑤logab=,推广logab·logbc·logcd=logad. (2)对数的运算法则(a>0,且a≠1,M>0,N>0) ①loga(M·N)=logaM+logaN;②loga=logaM-logaN;③logaMn=nlogaM(n∈R);④loga=logaM. 3.对数函数的图象与性质 a>1 0<a<1 图象 性质 (1)定义域:(0,+∞) (2)值域:R (3)过点(1,0),即x=1时,y=0 (4)当x>1时,y>0 当0<x<1时,y<0 (5)当x>1时,y<0 当0<x<1时,y>0 (6)在(0,+∞)上是增函数 (7)在(0,+∞)上是减函数查看更多