2014年广东省佛山市中考数学试卷(含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2014年广东省佛山市中考数学试卷(含答案)

广东省佛山市2014年中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的)‎ ‎1.(3分)(2014•佛山)|﹣2|等于(  )‎ ‎ ‎ A.‎ ‎2‎ B.‎ ‎﹣2‎ C.‎ D.‎ 考点:‎ 绝对值..‎ 分析:‎ 根据绝对值的性质可直接求出答案.‎ 解答:‎ 解:根据绝对值的性质可知:|﹣2|=2.‎ 故选A.‎ 点评:‎ 此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.‎ 绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.‎ ‎ ‎ ‎2.(3分)(2014•佛山)一个几何体的展开图如图,这个几何体是(  )‎ ‎ ‎ A.‎ 三棱柱 B.‎ 三棱锥 C.‎ 四棱柱 D.‎ 四棱锥 考点:‎ 展开图折叠成几何体..‎ 分析:‎ 根据四棱柱的展开图解答.‎ 解答:‎ 解:由图可知,这个几何体是四棱柱.‎ 故选C.‎ 点评:‎ 本题考查了展开图折叠成几何体,熟记四棱柱的展开图的形状是解题的关键.‎ ‎ ‎ ‎3.(3分)(2014•佛山)下列调查中,适合用普查方式的是(  )‎ ‎ ‎ A.‎ 调查佛山市市民的吸烟情况 ‎ ‎ B.‎ 调查佛山市电视台某节目的收视率 ‎ ‎ C.‎ 调查佛山市市民家庭日常生活支出情况 ‎ ‎ D.‎ 调查佛山市某校某班学生对“文明佛山”的知晓率 考点:‎ 全面调查与抽样调查..‎ 分析:‎ 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.‎ 解答:‎ 解:A.调查佛山市市民的吸烟情况,所费人力、物力和时间较多,适合抽样调查;‎ B.调查佛山市电视台某节目的收视率,所费人力、物力和时间较多,适合抽样调查;‎ C.调查佛山市市民家庭日常生活支出情况,所费人力、物力和时间较多,适合抽样调查;‎ D.调查佛山市某校某班学生对“文明佛山”的知晓率,适合用普查方式,故本项正确,‎ 故选:D.‎ 点评:‎ 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.‎ ‎ ‎ ‎4.(3分)(2014•佛山)若两个相似多边形的面积之比为1:4,则它们的周长之比为(  )‎ ‎ ‎ A.‎ ‎1:4‎ B.‎ ‎1:2‎ C.‎ ‎2:1‎ D.‎ ‎4:1‎ 考点:‎ 相似多边形的性质..‎ 分析:‎ 根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解.‎ 解答:‎ 解:∵两个相似多边形面积比为1:4,‎ ‎∴周长之比为=1:2.‎ 故选:B.‎ 点评:‎ 本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.‎ ‎ ‎ ‎5.(3分)(2014•佛山)若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是(  )‎ ‎ ‎ A.‎ ‎15°‎ B.‎ ‎30°‎ C.‎ ‎45°‎ D.‎ ‎75°‎ 考点:‎ 角的计算..‎ 分析:‎ 先画出图形,利用角的和差关系计算.‎ 解答:‎ 解:∵∠AOB=60°,∠BOD=15°,‎ ‎∴∠AOD=∠AOB﹣∠BOD=60°﹣15°=45°,‎ 故选:C.‎ 点评:‎ 本题考查了角的计算,注意先画出图形,利用角的和差关系计算.‎ ‎ ‎ ‎6.(3分)(2014•佛山)下列函数中,当x>0时,y值随x值的增大而减小的是(  )‎ ‎ ‎ A.‎ y=x B.‎ y=2x﹣1‎ C.‎ y=‎ D.‎ y=x2‎ 考点:‎ 二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质..‎ 分析:‎ 分别利用一次函数以及二次函数和反比例函数的性质分析得出即可.‎ 解答:‎ 解:A、y=x,y随x的增大而增大,故此选项错误;‎ B、y=2x﹣1,y随x的增大而增大,故此选项错误;‎ C、y=,当x>0时,y值随x值的增大而减小,此选项正确;‎ D、y=x2,当x>0时,y值随x值的增大而增大,此选项错误.‎ 故选:C.‎ 点评:‎ 此题主要考查了二次函数和一次函数以及反比例函数的性质等知识,熟练应用函数的性质是解题关键.‎ ‎ ‎ ‎7.(3分)(2014•佛山)据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学记数法表示民生项目资金是(  )‎ ‎ ‎ A.‎ ‎70×108元 B.‎ ‎7×108元 C.‎ ‎6.93×108元 D.‎ ‎6.93×109元 考点:‎ 科学记数法—表示较大的数..‎ 分析:‎ 用总投入乘以99%,再根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.‎ 解答:‎ 解:7 000 000 000×99%=6 930 000 000=6.93×109.‎ 故选D.‎ 点评:‎ 此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.‎ ‎ ‎ ‎8.(3分)(2014•佛山)多项式2a2b﹣a2b﹣ab的项数及次数分别是(  )‎ ‎ ‎ A.‎ ‎3,3‎ B.‎ ‎3,2‎ C.‎ ‎2,3‎ D.‎ ‎2,2‎ 考点:‎ 多项式..‎ 分析:‎ 多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.‎ 解答:‎ 解:2a2b﹣a2b﹣ab是三次三项式,故次数是3,项数是3.‎ 故选A.‎ 点评:‎ 此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.‎ ‎ ‎ ‎9.(3分)(2014•佛山)下列说法正确的是(  )‎ ‎ ‎ A.‎ a0=1‎ B.‎ 夹在两条平行线间的线段相等 ‎ ‎ C.‎ 勾股定理是a2+b2=c2‎ D.‎ 若有意义,则x≥1且x≠2‎ 考点:‎ 零指数幂;分式有意义的条件;二次根式有意义的条件;平行线之间的距离;勾股定理..‎ 分析:‎ 分别利用零指数幂的性质以及二次根式有意义的条件和勾股定理以及平行线的距离等知识,分别判断得出即可.‎ 解答:‎ 解:A、a0=1(a≠0),故此选项错误;‎ B、夹在两条平行线间的线段不一定相等,故此选项错误;‎ C、当∠C=90°,则由勾股定理得a2+b2=c2,故此选项错误;‎ D、若有意义,则x≥1且x≠2,此选项正确.‎ 故选:D.‎ 点评:‎ 此题主要考查了零指数幂的性质以及二次根式有意义的条件和勾股定理等知识,正确把握相关定义是解题关键.‎ ‎ ‎ ‎10.(3分)(2014•佛山)把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是(  )‎ ‎ ‎ A.‎ ‎5‎ B.‎ ‎6‎ C.‎ ‎7‎ D.‎ ‎8‎ 考点:‎ 图形的剪拼..‎ 分析:‎ 根据正方体拼组长方体的方法,可以将24分解质因数,24=2×2×2×3,所以24可以写成:2×12,3×8,4×6,24×1,2×4×3,2×2×6,六种情况.‎ 解答:‎ 解:24=2×2×2×3‎ 所以24可以写成:2×12,3×8,4×6,24×1,2×4×3,2×2×6,6种情况 ‎①2×12排列,长宽高分别是12厘米、2厘米、1厘米 ‎②3×8排列:长宽高分别是:8厘米、3厘米、1厘米 ‎③4×6排列:长宽高分别是:6厘米、4厘米、1厘米 ‎④24×1排列:长宽高分别是:24厘米、1厘米、1厘米 ‎⑤2×4×3,长宽高分别是:4厘米、3厘米、2厘米 ‎⑥2×2×6,长宽高分别是6厘米、2厘米、2厘米 答:共有6种不同的拼法,‎ 故选:B.‎ 点评:‎ 此题主要考查了图形的剪拼,利用分类讨论得出是解题关键.‎ ‎ ‎ 二、填空题(本大题共5小题,每小题3分,共15分.)‎ ‎11.(3分)(2014•佛山)如图,线段的长度大约是 2.3(或2.4) 厘米(精确到0.1厘米).‎ 考点:‎ 比较线段的长短..‎ 分析:‎ 根据对线段长度的估算,可得答案.‎ 解答:‎ 解:线段的长度大约是2.3(或2.4)厘米,‎ 故答案为:2.3(或2.4).‎ 点评:‎ 本题考查了比较线段的长短,对线段的估算是解题关键.‎ ‎ ‎ ‎12.(3分)(2014•佛山)计算:(a3)2•a3= a9 .‎ 考点:‎ 幂的乘方与积的乘方;同底数幂的乘法..‎ 分析:‎ 根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.‎ 解答:‎ 解:原式=a6•a3=a9,‎ 故答案为:a9.‎ 点评:‎ 本题考查了幂的乘方,先算幂的乘方,再算同底数幂的乘法.‎ ‎ ‎ ‎13.(3分)(2014•佛山)不等式组的解集是 x<﹣6 .‎ 考点:‎ 解一元一次不等式组..‎ 分析:‎ 分别求出各不等式的解集,再求出其公共解集即可.‎ 解答:‎ 解:,由①得,x<﹣3,由②得,x<﹣6,‎ 故此不等式组的解集为:x<﹣6.‎ 故答案为:x<﹣6.‎ 点评:‎ 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.‎ ‎ ‎ ‎14.(3分)(2014•佛山)如图是一副三角板叠放的示意图,则∠α= 75° .‎ 考点:‎ 三角形的外角性质..‎ 分析:‎ 首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.‎ 解答:‎ 解:∵∠ACB=90°,∠1=45°,‎ ‎∴∠2=90°﹣45°=45°,‎ ‎∴∠α=45°+30°=75°,‎ 故答案为:75°.‎ 点评:‎ 此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.‎ ‎ ‎ ‎15.(3分)(2014•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是 ﹣2 .‎ 考点:‎ 扇形面积的计算..‎ 分析:‎ 如图,连接CE.图中S阴影=S扇形BCE﹣S扇形BOD﹣S△OCE.根据已知条件易求得OA=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2所以由扇形面积公式、三角形面积公式进行解答即可.‎ 解答:‎ 解:如图,连接CE.‎ ‎∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,‎ ‎∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.‎ 又∵OE∥BC,‎ ‎∴∠ACB=∠COE=90°.‎ ‎∴在直角△OEC中,OC=2,CE=4,‎ ‎∴∠CEO=30°,∠ECB=60°,OE=2‎ ‎∴S阴影=S扇形BCE﹣S扇形BOD﹣S△OCE=﹣π×22﹣×2×2=﹣2,‎ 故答案为:﹣2.‎ 点评:‎ 本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.‎ ‎ ‎ 三、解答题(写出必要的解题步骤,另有要求的按要求作答,16~20题,每小题6分,21~23题,每小题6分,24题10分,25题11分,共75分)‎ ‎16.(6分)(2014•佛山)计算:÷2﹣1+•[2+(﹣)3].‎ 考点:‎ 实数的运算;负整数指数幂..‎ 分析:‎ 本题涉及负整指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果 解答:‎ 解:原式=2÷+3×(2﹣2)‎ ‎=4+6﹣6‎ ‎=6﹣2.‎ 点评:‎ 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.‎ ‎ ‎ ‎17.(6分)(2014•佛山)解分式方程:=.‎ 考点:‎ 解分式方程..‎ 专题:‎ 计算题.‎ 分析:‎ 分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验即可得到分式方程的解.‎ 解答:‎ 解:去分母得:2a+2=﹣a﹣4,‎ 解得:a=﹣2,‎ 经检验a=﹣2是分式方程的解.‎ 点评:‎ 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.‎ ‎ ‎ ‎18.(6分)(2014•佛山)一个不透明的袋里装有两个白球和三个红球,它们除颜色外其他都一样,‎ ‎(1)求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;‎ ‎(2)直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率.‎ 考点:‎ 列表法与树状图法;概率公式..‎ 专题:‎ 计算题.‎ 分析:‎ ‎(1)5个球中白球有2个,求出所求概率即可;‎ ‎(2)列表得出所有等可能的情况数,找出袋中同时任意摸出两个球,摸出的两个球都是红球的情况数,即可求出所求的概率.‎ 解答:‎ 解:(1)根据题意得:P(摸出的一个球是白球)=;‎ ‎(2)列表如下:‎ 白 白 红 红 红 白 ‎﹣﹣﹣‎ ‎(白,白)‎ ‎(红,白)‎ ‎(红,白)‎ ‎(红,白)‎ 白 ‎(白,白)‎ ‎﹣﹣﹣‎ ‎(红,白)‎ ‎(红,白)‎ ‎(红,白)‎ 红 ‎(白,红)‎ ‎(白,红)‎ ‎﹣﹣﹣‎ ‎(红,红)‎ ‎(红,红)‎ 红 ‎(白,红)‎ ‎(白,红)‎ ‎(红,红)‎ ‎﹣﹣﹣‎ ‎(红,红)‎ 红 ‎(白,红)‎ ‎(白,红)‎ ‎(红,红)‎ ‎(红,红)‎ ‎﹣﹣﹣‎ 所有等可能的情况有20种,其中两次摸出的球都是红球的情况有6种,‎ 则P==.‎ 点评:‎ 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.‎ ‎ ‎ ‎19.(6分)(2014•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.‎ 考点:‎ 垂径定理;勾股定理..‎ 分析:‎ 过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.‎ 解答:‎ 解:过点O作OE⊥AB于点E,连接OB,‎ ‎∵AB=8cm,‎ ‎∴AE=BE=AB=×8=4cm,‎ ‎∵⊙O的直径为10cm,‎ ‎∴OB=×10=5cm,‎ ‎∴OE===3cm,‎ ‎∴3cm≤OP≤5cm.‎ 点评:‎ 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.‎ ‎ ‎ ‎20.(6分)(2014•佛山)函数y=2x+1的图象经过哪几个象限?‎ ‎(要求:不能直接写出答案,要有解题过程;注:“图象经过某象限”是指“图象上至少有一点在某象限内”.)‎ 考点:‎ 一次函数的性质..‎ 分析:‎ 根据一次函数的性质,分k、b两个部分判断经过的象限即可.‎ 解答:‎ 解:∵k=2>0,‎ ‎∴函数y=2x+1的图象经过第一、三象限,‎ ‎∵b=1,‎ ‎∴函数图象与y轴正半轴相交,‎ 综上所述,函数y=2x+1的图象经过第一、二、三象限.‎ 点评:‎ 本题考查了一次函数的性质,对于一次函数y=kx+b(k≠0,k、b是常数),k>0函数图象经过第一三象限,k<0,函数图象经过第二四象限,b>0,函数图象与y轴正半轴相交,b<0,函数图象与y轴负半轴相交.‎ ‎ ‎ ‎21.(8分)(2014•佛山)甲、乙两组数据(单位:厘米)如下表 甲组 ‎173‎ ‎172‎ ‎174‎ ‎174‎ ‎173‎ ‎173‎ ‎172‎ ‎173‎ ‎172‎ ‎174‎ 乙组 ‎173‎ ‎174‎ ‎171‎ ‎173‎ ‎173‎ ‎173‎ ‎173‎ ‎174‎ ‎173‎ ‎173‎ ‎(1)根据以上数据填表 众数(单位:厘米)‎ 平均数(单位:厘米)‎ 方差(单位:厘米)‎ 甲组 ‎ 173 ‎ ‎ 173 ‎ ‎ 0.6 ‎ 乙组 ‎ 173 ‎ ‎ 173 ‎ ‎ 1.8 ‎ ‎(2)那一组数据比较稳定?‎ 考点:‎ 方差;加权平均数;众数..‎ 分析:‎ ‎(1)根据平均数、众数定义可得答案,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算即可;‎ ‎(2)根据方差意义可得结论.‎ 解答:‎ 解:(1)填表 众数(单位:厘米)‎ 平均数(单位:厘米)‎ 方差(单位:厘米)‎ 甲组 ‎173‎ ‎173‎ ‎0.6‎ 乙组 ‎173‎ ‎173‎ ‎1.8‎ ‎(2)因为两组数据的平均数相同,且甲组数据的方差小,所以甲组数据较稳定.‎ 点评:‎ 此题主要考查了众数、平均数和方差,关键是掌握两种数的定义,以及方差的计算公式.‎ ‎ ‎ ‎22.(8分)(2014•佛山)现有不等式的性质:‎ ‎①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;‎ ‎②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变.‎ 请解决以下两个问题:‎ ‎(1)利用性质①比较2a与a的大小(a≠0);‎ ‎(2)利用性质②比较2a与a的大小(a≠0).‎ 考点:‎ 不等式的性质..‎ 专题:‎ 分类讨论.‎ 分析:‎ ‎(1)根据不等式的性质1,可得答案;‎ ‎(2)根据不等式的性质2,可得答案.‎ 解答:‎ 解:(1)a>0时,a+a>a+0,即2a>a,‎ a<0时,a+a<a+0,即2a<a;‎ ‎(2)a>0时,2>1,即2a>a;‎ a<0时,2>1,即2a<a.‎ 点评:‎ 本题考查了不等式的性质,不等式两边都乘以或除以同一个负数,不等号的方向改变.‎ ‎ ‎ ‎23.(8分)(2014•佛山)利用二次函数的图象估计一元二次方程x2﹣2x﹣1=0的近似根(精确到0.1).‎ 考点:‎ 图象法求一元二次方程的近似根..‎ 分析:‎ 根据函数与方程的关系,可得函数图象与x轴的交点的横坐标就是相应的方程的解.‎ 解答:‎ 解:∵二次函数y=x2﹣2x﹣1中a=1>0,‎ ‎∴抛物线开口方向向上,‎ 对称轴x=﹣=1.‎ 如图:‎ x2﹣2x﹣1=0的近似根x1=﹣0.4,x2=2.4.‎ 点评:‎ 本题考查了图象罚球一元二次方程的近似值,解答此题的关键是求出对称轴,然后由图象解答,锻炼了学生数形结合的思想方法.‎ ‎ ‎ ‎24.(10分)(2014•佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)]‎ ‎(2)如图2,在▱ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.‎ 若ABCD的周长为1,直接用算式表示各四边形的周长之和l;‎ ‎(3)借助图形3反映的规律,猜猜l可能是多少?‎ 考点:‎ 三角形中位线定理;规律型:图形的变化类;平行四边形的性质..‎ 分析:‎ ‎(1)作出图形,延长DE至F,使EF=DE,然后根据“边角边”证明△ADE和△CFE全等,根据全等三角形对应边相等可得AD=CF,全等三角形对应角相等可得∠A=∠ECF,再根据内错角相等,两直线平行可得AD∥CF,然后证明四边形BCFD是平行四边形,再根据平行四边形的对边平行且相等可得DF∥BC且DF=BC,然后整理即可得证;‎ ‎(2)根据三角形的中位线平行于第三边并且等于第三边的一半求出四边形A1B1C1D1的周长等于▱ABCD周长的一半,然后依次表示出各四边形的周长,再相加即可得解;‎ ‎(3)根据规律,l的算式等于大正方形的面积减去最后剩下的一小部分的面积,然后写出结果即可.‎ 解答:‎ 解:(1)已知:在△ABC中,D、E分别是边AB、AC的中点,‎ 求证:DE∥BC且DE=BC,‎ 证明:如图,延长DE至F,使EF=DE,‎ ‎∵E是AC的中点,‎ ‎∴AE=CE,‎ 在△ADE和△CFE中,‎ ‎,‎ ‎∴△ADE≌△CFE(SAS),‎ ‎∴AD=CF(全等三角形对应边相等),‎ ‎∠A=∠ECF(全等三角形对应角相等),‎ ‎∴AD∥CF,‎ ‎∵点D是AB的中点,‎ ‎∴AD=BD,‎ ‎∴BD=CF且BD∥CF,‎ ‎∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),‎ ‎∴DF∥BC且DF=BC(平行四边形的对边平行且相等),‎ ‎∵DE=EF=DF,‎ ‎∴DE∥BC且DE=BC;‎ ‎(2)∵A1、B1、C1、D1分别是OA、OB、OC、OD的中点,‎ ‎∴A1B1=AB,B1C1=BC,C1D1=CD,A1D1=AD,‎ ‎∴四边形A1B1C1D1的周长=×1=,‎ 同理可得,四边形A2B2C2D2的周长=×=,‎ 四边形A3B3C3D3的周长=×=,‎ ‎…,‎ ‎∴四边形的周长之和l=1++++…;‎ ‎(3)由图可知,+++…=1(无限接近于1),‎ 所以l=1++++…=2(无限接近于2).‎ 点评:‎ 本题考查了三角形的中位线平行于第三边并且等于第三边的一半的证明,利用面积法求等比数列的和,平行四边形的判定与性质,(1)作辅助线构造出全等三角形的和平行四边形是解题的关键,(3)仔细观察图形得到部分与整体的关系是解题的关键.‎ ‎ ‎ ‎25.(11分)(2014•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).‎ 如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.‎ ‎(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);‎ ‎(参考数据:sin22°≈0.37,cos22°≈0.92,tan22°≈0.40,≈1.73)‎ ‎(2)如图2,若∠ABC=30°,B1B=AB,计算tan15°的值(保留准确值);‎ ‎(3)直接写出tan7.5°的值.(注:若出现双重根式,则无需化简)‎ 考点:‎ 解直角三角形的应用;勾股定理..‎ 分析:‎ ‎(1)在直角△ABC和直角△AB1C中,利用三角函数,用AC分别表示出BC和B1C,根据B1B=B1C﹣BC,列方程求得AC的长;‎ ‎(2)设B1B=AB=x,在直角三角形ABC中,利用三角函数用x表示出AC和BC的长,则B1C即可求得,根据正切的定义即可求解;‎ ‎(3)按照(1)(2)的规律,画出含有7.5°角、15°角和30°角的直角三角形,如答图3所示,利用勾股定理、等腰三角形的性质及正切的定义,求出tan7.5°的值.‎ 解答:‎ 解:(1)在直角△ABC中,tan∠ABC=,‎ 则BC==AC,‎ 同理,B1C=,‎ ‎∵B1B=B1C﹣BC,‎ ‎∴﹣AC=30,‎ 解得:AC≈39;‎ ‎(2)∵B1B=AB,‎ ‎∴∠B1=∠B1AB=∠ABC=15°,‎ 设B1B=AB=x,‎ 在直角△ABC中,∠ABC=30°,‎ ‎∴AC=AB=x,BC=x,‎ ‎∴B1C=x+x,‎ ‎∴tan15°====2﹣;‎ ‎(3)如答图3所示,图中三角形依次是含有7.5°角、15°角和30°角的直角三角形.‎ 设AC=a,则AB=2a,BC==a.‎ ‎∴B1B=AB=2a,‎ ‎∴B1C=2a+a=(2+)a.‎ 在Rt△AB1C中,由勾股定理得:AB1===2a,‎ ‎∴B2B1=AB1=2a,‎ ‎∴B2C=B2B1+B1C=2a+(2+)a ‎∴tan7.5°=tan∠AB2C==‎ ‎∴tan7.5°=.‎ 点评:‎ 此题考查了三角函数的基本概念,主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档