专题04+算法、推理证明(仿真押题)-2018年高考数学(文)命题猜想与仿真押题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题04+算法、推理证明(仿真押题)-2018年高考数学(文)命题猜想与仿真押题

‎1.请仔细观察1,1,2,3,5,(  ),13,运用合情推理,可知写在括号里的数最可能是(  )‎ A.8       B.9‎ C.10 D.11‎ 解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.‎ ‎2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为(  )‎ A.2 B.5‎ C.11 D.23‎ ‎3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(  )‎ A.f(x) B.-f(x)‎ C.g(x) D.-g(x)‎ 解析:选D.由所给等式知,偶函数的导数是奇函数.‎ ‎∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.‎ ‎∴g(-x)=-g(x).‎ ‎4.执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为(  )‎ A.7 B.8‎ C.9 D.10‎ 解析:选D.根据程序框图知,当i=4时,输出S.第1次循环得到S=S0-2,i=2;第2次循环得到S=S0-2-4,i=3;第3次循环得到S=S0-2-4-8,i=4.由题意知S0-2-4-8=-4,所以S0=10,故选D.‎ ‎5.执行如图所示的程序框图,如果输入x,t的值均为2,最后输出S的值为n,在区间[0,10]上随机选取一个数D,则D≤n的概率为(  )‎ A. B. C. D. ‎ ‎ ‎6.如图所示的程序框图的运行结果为(  )‎ A.-1 B. C.1 D.2‎ 解析:选A.a=2,i=1,i≥2 019不成立;‎ a=1-=,i=1+1=2,i≥2 019不成立;‎ a=1-=-1,i=2+1=3,i≥2 019不成立;‎ a=1-(-1)=2,i=3+1=4,i≥2 019不成立;‎ ‎…,‎ 由此可知a是以3为周期出现的,结束时,i=2 019=3×673,此时a=-1,故选A.‎ ‎7.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=.类比这个结论可知:四面体SABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体SABC的体积为V,则R等于(  )‎ A. B. C. D. ‎8.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为(  )‎ A.k≥16‎ B.k<8‎ C.k<16‎ D.k≥8‎ 解析:选A.根据框图的循环结构依次可得S=0+1=1,k=2×1=2;S=1+2=3,k=2×2=4;S=3+4=7,k=2×4=8;S=7+8=15,k=2×8=16,根据题意此时跳出循环,输出S=15.所以M处的条件应为k≥16.故A正确.‎ ‎9.如图所示的程序框图中,输出S=(  )‎ A.45 B.-55‎ C.-66 D.66‎ ‎10.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:‎ ‎①2 018∈[3];‎ ‎②-2∈[2];‎ ‎③Z=[0]∪[1]∪[2]∪[3]∪[4];‎ ‎④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.‎ 其中正确结论的个数为(  )‎ A.1 B.2‎ C.3 D.4‎ 解析:选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,故④正确.所以正确的结论有3个,故选C.‎ ‎11.请仔细观察1,1,2,3,5,(  ),13,运用合情推理,可知写在括号里的数最可能是(  )‎ A.8            B.9‎ C.10 D.11‎ 解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.‎ ‎12.下面四个推导过程符合演绎推理三段论形式且推理正确的是(  )‎ A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 解析:选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大前提错误,故选B.‎ ‎13.阅读如图所示的程序框图,运行相应程序,则输出的i的值为(  )‎ A.3 B.4‎ C.5 D.6‎ ‎14.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为(  )‎ A.2 B.5‎ C.11 D.23‎ 解析:选D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.‎ ‎15.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(  )‎ A.f(x) B.-f(x)‎ C.g(x) D.-g(x)‎ ‎ ‎ ‎16.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=.类比这个结论可知:四面体SABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体SABC的体积为V,则R等于(  )‎ A. B. C. D. 解析:选C.把四面体的内切球的球心与四个顶点连起来分成四个小三棱锥,其高都是R,四个小三棱锥的体积和等于四面体的体积,因此V=S1R+S2R+S3R+S4R,解得R=.‎ ‎17.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为(  )‎ A.k≥16 B.k<8‎ C.k<16 D.k≥8‎ 解析:选A.根据框图的循环结构依次可得S=0+1=1,k=2×1=2;S=1+2=3,k=2×2=4;S=3+4=7,k=2×4=8;S=7+8=15,k=2×8=16,根据题意此时跳出循环,输出S=15.所以M处的条件应为k≥16.故A正确.‎ ‎18.执行如图所示的程序框图,若输出结果为3,则可输入的实数x的值的个数为(  )‎ A.1 B.2‎ C.3 D.4‎ ‎19.如图给出的是计算+++…+的值的一个程序框图,其中判断框内应填入的条件是(  )‎ A.i>10 B.i<10‎ C.i>20 D.i<20‎ 解析:选A.+++…+是10个数的和,通过对程序框图的分析,可知选A.‎ ‎20.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:‎ ‎①2 018∈[3];‎ ‎②-2∈[2];‎ ‎③Z=[0]∪[1]∪[2]∪[3]∪[4];‎ ‎④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.‎ 其中正确结论的个数为(  )‎ A.1 B.2‎ C.3 D.4‎ 解析:选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,故④正确.所以正确的结论有3个,故选C.‎ ‎21.如图(1)是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,则在流程图中的判断框内应填写(  )‎ A.i<6? B.i<7?‎ C.i<8? D.i<9?‎ 解析:选C.统计身高在160~180 cm的学生人数,即求A4+A5+A6+A7的值.当4≤i≤7时,符合要求.‎ ‎22.对于函数f(x),若存在非零常数a,使得当x取定义域内的每一个值时,都有f(x)=f(2a-x),则称f(x)为准偶函数.下列函数中是准偶函数的是(  )‎ A.f(x)= B.f(x)=x2‎ C.f(x)=tan x D.f(x)=cos(x+1)‎ ‎23.观察下列式子:1+<,1++<,1+++<,…,根据上述规律,第n个不等式应该为________.‎ 解析:不等式的左边为连续自然数的平方的倒数和,即1++…+,不等式的右边为.‎ 答案:1++…+< ‎24.执行如图所示的流程图,则输出的k的值为________.‎ 解析:由流程图知:‎ S=1>6?否,k=2;‎ S=2>6?否,k=3;‎ S=6>6?否,k=4;‎ S=15>6?是,退出循环,输出的k的值为4.‎ 答案:4‎ ‎25.阅读如图所示的程序框图,运行相应的程序,输出的结果S=________.‎ 答案: ‎26.观察下列等式:1=1,1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,……,由以上可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1=________.‎ 解析:∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,……,∴归纳可得1+2+…+n+…+2+1=n2.‎ 答案:n2‎ ‎27.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.‎ 解析:令a≥b得,x2≥x3,解得x≤1.所以当x≤1时,输出a=x2,当x>1时,输出b=x3.当x≤1时,由题意得a=x2=8,解得x=-=-2.当x>1时,由题意得b=x3=8,得x=2,所以输入的数为2或-2.‎ ‎28.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:‎ 甲说:“我们四人都没考好.”‎ 乙说:“我们四人中有人考得好.”‎ 丙说:“乙和丁至少有一人没考好.”‎ 丁说:“我没考好.”‎ 结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.‎ 解析:甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.‎ 答案:乙,丙 ‎29.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是________.‎ ‎30.集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:‎ T3=1×2+1×3+2×3=×[62-(12+22+32)]=11;‎ T4=1×2+1×3+1×4+2×3+2×4+3×4=×[102-(12+22+32+42)]=35;‎ T5=1×2+1×3+1×4+1×5+…+3×5+4×5=×[152-(12+22+32+42+52)]=85.‎ 则T7=________.(写出计算结果)‎ 答案:322‎
查看更多

相关文章

您可能关注的文档