- 2021-05-28 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
二次函数的图象和性质(3)
22.1 二次函数(5) 教学目标: 1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。 2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。 3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。 重点难点: 重点:确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质是教学的重点。 难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是教学的难点。 教学过程: 一、提出问题 1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系? (函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的) 2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系? 3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质? 二、试一试 你能填写下表吗? y=2x2 向右平移 的图象 1个单位 y=2(x-1)2 向上平移 1个单位 y=2(x-1)2+1的图象 开口方向 向上 对称轴 y轴 顶 点 (0,0) 问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗? 问题3:你能发现函数y=2(x-1)2+1有哪些性质? 对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识; 函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2 2 的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。 当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。 三、做一做 问题4:在图3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗? 问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗? (函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2) 四、课堂练习: 练习1、2、3、4。 练习第4题提示:将-3x2-6x+8配方,即 y=-3x2-6x+8 =-3(x2+2x)+8 =-3(x+1)2+11 五、小结 1.通过本节课的学习,你学到了哪些知识?还存在什么困惑? 六、作业: 1.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。 (1)在同一直角坐标系中画出三个函数的图象; (2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标; (3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3; (4)试讨沦函数y=6(x+3)2-3的性质; 3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。 4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系? 教后反思: 2查看更多