- 2021-05-27 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020版高考化学一轮复习晶体结构与性质学案
第三节 晶体结构与性质 [高考备考指南] 考纲定位 1.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。 2.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 3.理解金属键的含义,能用金属键理论解释金属的一些物理性质;了解金属晶体常见的堆积方式。 4.了解晶体类型,了解不同类型晶体中结构微粒及微粒间作用力的区别。 5.了解晶胞概念,能根据晶胞确定晶体组成并进行相关的计算。 6.了解晶格能的概念及其对离子晶体性质的影响。 7.了解分子晶体结构与性质关系。 核心素养 1.微观探析——能从晶体的微观层面理解其组成、结构和性质的联系,形成“结构决定性质,性质决定应用”的观念;能根据晶体的微观结构预测物质在特定条件下可能具有的性质和可能发生的变化。 2.模型认识——能认识晶体结构与模型之间的联系,能运用多种模型来描述和解释晶体微观结构和性质,同时自己要建构模型解决一些问题。 晶体结构——晶胞 (对应复习讲义第165页) 1.晶体与非晶体 (1)晶体与非晶体比较 晶体 非晶体 结构特征 结构微粒在三维空间里呈周期性有序排列 结构微粒 无序排列 性质 特征 自范性 有 无 熔点 固定 不固定 异同表现 各向异性 无各向异性 二者区 别方法, 间接方法,看是否有固定的熔点 科学方法,对固体进行X射线衍射实验(2)获得晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接凝固(凝华)。 ③溶质从溶液中析出。 2.晶胞 (1)概念:描述晶体结构的基本单元。 (2)晶体中晶胞的排列——无隙并置。 ①无隙:相邻晶胞之间没有任何间隙; ②并置:所有晶胞平行排列、取向相同。 (3)一般形状为平行六面体。 均摊法突破晶胞中粒子数的计算 晶胞任意位置上的一个原子如果是被n个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是。 ①长方体(包括立方体)晶胞中不同位置的粒子数的计算 ②非长方体:如三棱柱 角度1 晶体的性质与组成 1.如图是某固体的微观结构示意图,请认真观察两图,判断下列说法正确的是( ) A.两种物质在一定条件下都会自动形成有规则几何外形的晶体 B.Ⅰ形成的固体物理性质有各向异性 C.Ⅱ形成的固体一定有固定的熔、沸点 D.二者的X射线图谱是相同的 B [Ⅰ会自动形成规则几何外形的晶体,具有各向异性,X射线图谱有明锐的谱线。Ⅱ不会形成晶体。] 2. Zn与S所形成化合物晶体的晶胞如右图所示。 (1)在1个晶胞中,Zn离子的数目为________。 (2)该化合物的化学式为 ________。 [解析] (1)从晶胞图分析,1个晶胞含有Zn离子的个数为8×+6×=4。(2)S为4个,所以化合物中Zn与S数目之比为1∶1,则化学式为ZnS。 [答案] (1)4 (2)ZnS 3.Cu元素与H元素可形成一种红色化合物,其晶体结构单元如下图所示。则该化合物的化学式为________。 [解析] Cu个数:12×+2×+3=6,H个数:6×+4=6。 [答案] CuH 角度2 晶体结构的有关计算 【例】 (2017·全国卷Ⅱ节选)[(N5)6(H3O)3(NH4)4Cl]的晶体密度为d g·cm-3,其立方晶胞参数为a nm,晶胞中含有y个[(N5)6(H3O)3(NH4)4Cl]单元,该单元的相对质量为M,则y的计算表达式为________________________________________________________________________。 [思路点拨] ①1个晶胞体积[(a×10-7cm)3]1 mol晶胞质量[(a×10-7cm)3NAd g] ②根据单元的相对质量(M)1 mol晶胞质量(My g) ③(a×10-7)3NAd=My,故y=。 [答案]×10-21 晶体结构的相关计算 (1)晶胞计算公式(立方晶胞) a3ρNA=nM(a:棱长,ρ:密度,NA:阿伏加德罗常数的值,n:1 mol晶胞所含基本粒子或特定组合的物质的个数,M:组成的摩尔质量)。 (2)金属晶体中体心立方堆积、面心立方堆积中的几组公式(设棱长为a) ①面对角线长=a。 ②体对角线长=a。 ③体心立方堆积4r=a(r为原子半径)。 ④面心立方堆积4r=a(r为原子半径)。 (3)空间利用率=。 [对点训练] 1.(1)(2018·全国卷Ⅰ节选)Li2O具有反萤石结构,晶胞如图所示。已知晶胞参数为0.466 5 nm,阿伏加德罗常数的值为NA,则Li2O的密度为________ g·cm-3(列出计算式)。 (2)(2018·全国卷Ⅲ节选)金属Zn晶体中的原子堆积方式如图所示,这种堆积方式称为________。六棱柱底边边长为a cm,高为c cm,阿伏加德罗常数的值为NA,Zn的密度为______g·cm-3(列出计算式)。 [解析] (1)1个氧化锂晶胞含O的个数为8×+6×=4,含Li的个数为8,1 cm=107 nm,代入密度公式计算可得Li2O的密度为 g·cm-3。 (2)题图中原子的堆积方式为六方最密堆积。六棱柱底部正六边形的面积为6×a2 cm2,六棱柱的体积为6×a2c cm3,该晶胞中Zn原子个数为12×+2×+3=6,已知Zn的相对原子质量为65,阿伏加德罗常数的值为NA,则Zn的密度ρ== g·cm-3。 [答案] (1) (2)六方最密堆积(A3型) 2.(2017·全国卷Ⅰ节选)(1)KIO3晶体是一种性能良好的非线性光学材料,具有钙钛 矿型的立体结构,边长为a=0.446 nm,晶胞中K、I、O分别处于顶角、体心、面心位置,如图所示。K与O间的最短距离为________nm,与K紧邻的O个数为________。 (2)在KIO3晶胞结构的另一种表示中,I处于各顶角位置,则K处于________位置,O处于________位置。 [解析] (1)K与O间的最短距离为a=×0.446 nm≈0.315 nm;由于K、O分别位于晶胞的顶角和面心,所以与K紧邻的O原子为12个。 (2)根据KIO3的化学式及晶胞结构可画出KIO3的另一种晶胞结构,如右图,可看出K处于体心,O处于棱心。 [答案] (1)0.315 12 (2)体心 棱心 3.(2016·全国卷Ⅲ节选)GaAs的熔点为1 238 ℃,密度为ρ g·cm-3,其晶胞结构如图所示。Ga和As的摩尔质量分别为MGag·mol-1和MAsg·mol-1,原子半径分别为rGapm和rAspm,阿伏加德罗常数值为NA,则GaAs晶胞中原子的体积占晶胞体积的百分率为 ________。 [解析] 分析GaAs的晶胞结构,4个Ga原子处于晶胞体内,8个As原子处于晶胞的顶点、6个As原子处于晶胞的面心,结合“均摊法”计算可知,每个晶胞中含有4个Ga原子,含有As原子个数为8×1/8+6×1/2=4,Ga和As的原子半径分别为rGapm=rGa×10-10cm,rAspm=rAs×10-10cm,则原子的总体积为V原子=4×π×[(rGa×10-10cm)3+(rAs×10-10cm)3]=×10-30(r+r)cm3。又知Ga和As的摩尔质量分别为MGag·mol-1和MAsg·mol-1,晶胞的密度为ρ g·cm-3,则晶胞的体积为V晶胞=4(MGa+MAs)/ρNA cm3,故GaAs晶胞中原子的体积占晶胞体积的百分率为×100%=×100%=×100%。 [答案] ×100% 常见晶体的微观结构 (对应复习讲义第166页) 1.原子晶体——金刚石与SiO2 (1)①金刚石晶体中,每个C与另外4个C形成共价键,碳原子采取sp3杂化,C—C键之间的夹角是109°28′,最小的环是6元环,每个C被12个环共用。 ②金刚石晶胞中,内部C在体对角线的处。每个晶胞含8个C。 (2)SiO2晶体中,每个Si原子与4个O成键,每个O原子与2个硅原子成键,最小的环是12元环,在“硅氧”四面体中,处于中心的是硅原子。1 mol SiO2晶体中含Si—O键数目为4NA,在SiO2晶体中Si、O原子均采取sp3杂化。 2.分子晶体——干冰和冰 (1)干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个,属于分子密堆积。晶胞中含有4个CO2分子。同类晶体还有晶体I2、晶体O2等。 (2)冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol氢键。晶胞结构与金刚石相似,含有8个H2O。 3.金属晶体 (1)“电子气理论”要点 该理论把金属键描述为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有金属原子维系在一起。 (2)金属键的实质是金属阳离子与电子气间的静电作用。 (3)金属晶体的常见堆积 堆积模型 常见金属 配位数 晶胞 面心立方 最密堆积 (铜型) Cu、Ag、Au 12 体心立方 堆积 Na、K、Fe 8 六方最密 堆积 (镁型) Mg、Zn、Ti 12 简单立方 堆积 Po 6 说明:六方最密堆积是按ABABAB……的方式堆积,面心立方最密堆积是按ABCABCABC……的方式堆积。 4.离子晶体 (1)NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。每个晶胞含4个Na+和4个Cl-。 (2)CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。 (3)CaF2型:在晶体中,F-的配位数为4,Ca2+的配位数为8,晶胞中含4个Ca2+,含8个F-。晶胞中F-在体对角线的处。 5. 石墨晶体——混合型晶体 (1)石墨层状晶体中,层与层之间的作用是范德华力。 (2)平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。 (3)每层中存在σ键和π键,还有金属键。 (4)C—C的键长比金刚石的C—C键长短,熔点比金刚石的高。 (5)能导电。 1.(2018·宜昌模拟)下列说法正确的是( ) A.钛和钾都采取图1的堆积方式 B.图2为金属原子在二维空间里的非密置层放置,此方式在三维空间里堆积,仅得简单立方堆积 C.图3是干冰晶体的晶胞,晶胞棱长为a cm,则在每个CO2周围最近且等距离的CO2有8个 D.图4是一种金属晶体的晶胞,它是金属原子在三维空间以密置层采取ABCABC…堆积的结果 D [图1表示的堆积方式为A3型紧密堆积,K采用A2型密堆积,A错误;B在二维空间里的非密置层放置,在三维空间堆积形成A2型密堆积,得到体心立方堆积,B错误;干冰晶体的晶胞属于面心立方晶胞,配位数为12,即每个CO2周围距离相等的CO2分子有12个,C错误;该晶胞类型为面心立方,则为A1型密堆积,金属原子在三维空间里密置层采取ABCABC…堆积,D正确。] 2.(2015·全国卷Ⅰ节选)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C原子连接________个六元环,每个六元环占有________个C原子。 (2)在金刚石晶体中,C原子所连接的最小环也为六元环,每个C原子连接________个六元环。六元环中最多有________个C原子在同一平面。 [解析] (1)由石墨烯的结构可知,每个C原子连接3个六元环,每个六元环占有的C原子数为×6=2。 (2)由金刚石的结构可知,每个C可参与形成4条C—C键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C原子连接12个六元环。六元环中C原子采取sp3杂化,为空间六边形结构,最多有4个C原子位于同一平面。 [答案] (1)3 2 (2)12 4 3.(2018·全国卷Ⅱ节选)硫及其化合物有许多用途,相关物质的物理常数如下表所示: H2S S8 FeS2 SO2 SO3 H2SO4 熔点/℃ -85.5 115.2 沸点/℃ -60.3 444.6 >600 (分解) -75.5 16.8 10.3 -10.0 45.0 337.0 回答下列问题: (1)图(a)为S8的结构,其熔点和沸点要比二氧化硫的熔点和沸点高很多,主要原因为________________________________________________________________________。 图(a) 图(c) (2)FeS2晶体的晶胞如图(c)所示。晶胞边长为a nm,FeS2相对式量为M、阿伏加德罗常数的值为NA,其晶体密度的计算表达式为________ g·cm-3;晶胞中Fe2+位于S所形成的正八面体的体心,该正八面体的边长为________nm。 [答案](1)二者均为分子晶体,S8相对分子质量大,分子间范德华力强 (2)×1021 a 四种晶体的性质及判断 (对应复习讲义第167页) 1.晶格能 (1)定义 气态离子形成1 mol离子晶体释放的能量,单位kJ/mol,通常取正值。 (2)影响因素 ①离子所带电荷数:离子所带电荷数越多,晶格能越大。 ②离子的半径:离子的半径越小,晶格能越大。 (3)与离子晶体性质的关系 晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度越大。 [注意] 晶格能只描述离子晶体的性质。 2.四种晶体类型比较 类型 比较 分子晶体 原子晶体 金属晶体 离子晶体 构成粒子 分子 原子 金属阳离子 和自由电子 阴、阳离子 粒子间的 相互作用力 分子间 作用力 共价键 金属键 离子键 续表 类型 比较 分子晶体 原子晶体 金属晶体 离子晶体 硬度 较小 很大 有的很大, 有的很小 较大 熔、 沸点 较低 很高 有的很高, 有的很低 较高 溶解性 相似相溶 难溶于任 何溶剂 常见溶 剂难溶 大多易溶 于水等极 性溶剂 导电、 传热性 一般不导 电,溶于水 后有的导电 一般不具有 导电性 电和热的 良导体 晶体不导电, 水溶液或熔 融态导电 [注意] 石墨晶体为混合型晶体,为层状结构,熔点比金刚石的高,导电。 3.晶体熔、沸点的比较 (1)不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:原子晶体>离子晶体>分子晶体。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)同种晶体类型熔、沸点的比较 ①原子晶体 ―→―→―→ 如熔点:金刚石>碳化硅>硅。 ②离子晶体 a.一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO>MgCl2>NaCl>CsCl。 b.衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体 a.分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。如H2O>H2Te>H2Se>H2S。 b.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。 c.组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3。 d.同分异构体,支链越多,熔、沸点越低。 如CH3—CH2—CH2—CH2—CH3> CH3CHCH3CH2CH3>CCH3CH3CH3CH3。 ④金属晶体 金属离子半径越小,离子电荷数越多,金属阳离子与自由电子静电作用越强,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na查看更多