- 2021-05-26 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
近几年四川高考数学理真题分类汇编概率题
近几年(2019--2019)四川高考数学自主命题试题 概率题汇总 1.(05年四川理科17) (本小题满分12分) 设甲、乙、丙三台机器是否需要照顾相互之间没有影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. 2.(06年四川理科18)(本大题满分12分) 某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为;在实验考核中合格的概率分别为,所有考核是否合格相互之间没有影响 (Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数) 3.(07年四川理科18)(本小题满分12分) 厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率. 4.(08年四川理科18)(本小题满分12分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。 5.(09年四川理科18)本小题满分12分) 为振兴旅游业,四川省2009年面向国内发行总量为2019万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。 (I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率; (II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求 的分布列及数学期望。 6.(10年四川理科17)(本小题满分12分) 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望Eξ. 7.(11年四川理科18本小题满分12分) 本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。 (Ⅰ)求出甲、乙所付租车费用相同的概率; (Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望 8.(12年四川理科17本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。 (Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值; (Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。 9.(13年四川理科18本小题满分12分) 某算法的程序框图如图1-6所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生. 图1-6 (1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3); (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据. 甲的频数统计表(部分) 运行 次数n 输出y的值 为1的频数 输出y的值 为2的频数 输出y的值 为3的频数 30 14 6 10 … … … … 2 100 1 027 376 697 乙的频数统计表(部分) 运行 次数n 输出y的值 为1的频数 输出y的值 为2的频数 输出y的值 为3的频数 30 12 11 7 … … … … 2 100 1 051 696 353 当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (3)按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望. 近几年四川省高考理科数学概率题汇总(答案) 1.(05年四川理科17)(本小题满分12分) 解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A、B、C,……1分 则A、B、C相互独立, 由题意得: P(AB)=P(A)P(B)=0.05 P(AC)=P(A)P(C)=0.1 P(BC)=P(B)P(C)=0.125…………………………………………………………4分 解得:P(A)=0.2;P(B)=0.25;P(C)=0.5 所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分 (Ⅱ)∵A、B、C相互独立,∴相互独立,……………………………………7分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为 ……………………………10分 ∴这个小时内至少有一台需要照顾的概率为……12分 2.(06年四川理科18) (本小题满分12分) 本小题主要考察相互独立事件、互斥事件、对立事件等概率的计算方法,考察应用概率知识解决实际问题的能力。满分12分。 解:记“甲理论考核合格”为事件,“乙理论考核合格”为事件,“丙理论考核合格”为事件, 记为的对立事件,;记“甲实验考核合格”为事件,“乙实验考核合格”为事件,“丙实验考核合格”为事件, (Ⅰ)记“理论考核中至少有两人合格”为事件,记为的对立事件 解法1: 解法2: 所以,理论考核中至少有两人合格的概率为 (Ⅱ)记“三人该课程考核都合格” 为事件 所以,这三人该课程考核都合格的概率为 3.(07年四川理科18)(本小题满分12分) 本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力。 解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A来算,有 (Ⅱ)可能的取值为 记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率 所以商家拒收这批产品的概率为 4.(08年四川理科18)(本小题满分12分) 解:记表示事件:进入商场的1位顾客购买甲种商品, 记表示事件:进入商场的1位顾客购买乙种商品, 记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种, 记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种, (Ⅲ),故的分布列 所以 5.(09年四川理科18)本小题满分12分) 本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。 解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”, 事件为“采访该团3人中,1人持金卡,0人持银卡”, 事件为“采访该团3人中,1人持金卡,1人持银卡”。 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是。 …………………………………………………………6分 (Ⅱ)的可能取值为0,1,2,3 所以的分布列为 0 1 2 3 所以, ……………………12分 6.(10年四川理科17)(本小题满分12分) 本小题主要考查相互独立事件、随机变量的分布列、数学期望等概念及相关计算,考查运用所学知识与方法解决实际问题的能力。 解:(Ⅰ)设甲、乙、丙中奖的事件分别为A、B、C,那么 答:甲中奖且乙、丙都没有中奖的概率是…………(6分) (Ⅱ)的可能取值为0,1,2,3。 [来源:学§科§网Z§X§X§K] 0 1 2 3 P …………(12分) 7.(11年四川理科18本小题满分12分) 解析:(1)所付费用相同即为元。设付0元为,付2元为,付4元为 则所付费用相同的概率为 (2)设甲,乙两个所付的费用之和为,可为 分布列 8.(12年四川理科17本小题满分12分) 9.(13年四川理科18本小题满分12分) 解:(1)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=; 当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=; 当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=, 所以,输出y的值为1的概率为,输出y的值为2的概率为,输出y的值为3的概率为. (2)当n=2 100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下: 输出y的值 为1的频率 输出y的值 为2的频率 输出y的值 为3的频率 甲 [来源:ZXXK] 乙 比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3. P(ξ=0)=C××=, P(ξ=1)=C××=, P(ξ=2)=C××=, P(ξ=3)=C××=, 故ξ的分布列为 ξ 0 1 2 3 P [来源:] 所以,Eξ=0×+1×+2×+3×=1. 即ξ的数学期望为1.查看更多