- 2021-05-26 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
后习题:第4章 第2节 万有引力定律的应用 第3节 人类对太空的不懈探索 Word版含解析
第 4 章万有引力定律及航天 第 2 节 万有引力定律的应用 第 3 节 人类对太空的不懈探索 课后篇巩固提升 基础巩固 1.(多选)如图所示,三颗人造卫星正在围绕地球做匀速圆周运动,则下列有关说法中正确的是 ( ) A.卫星可能的轨道为 a、b、c B.卫星可能的轨道为 a、c C.同步卫星可能的轨道为 a、c D.同步卫星可能的轨道为 a 解析卫星绕地球做匀速圆周运动的圆心必须与地心重合,所以卫星可能的轨道为 a、c,选项 A 错误,B 正确;同步卫星位于赤道的上方,可能的轨道为 a,选项 C 错误,D 正确。 答案 BD 2.(2019 山西太原高一期末)2019 年 1 月,我国在西昌卫星发射中心成功发射了“中星 2D”卫星。 “中星 2D”是我国最新研制的通信广播卫星,可为全国提供广播电视及宽带多媒体等传输任务。 “中星 2D”的质量为 m,运行轨道距离地面高度为 h。已知地球的质量为 m 地,半径为 R,引力常量 为 G,据以上信息可知“中星 2D”在轨运行时( ) A.速度的大小为 o + B.角速度的大小为 o 地 3 C.加速度大小为 o 地 ( + ) 2 D.周期为 2πR o 地 解析地球对“中星 2D”卫星的万有引力提供其做匀速圆周运动的向心力,有 G o 地 o( + ) 2 =m 2 + =m 4π2 2 (R+H)=ma,得速度大小为 v= o 地 + ,选项 A 错误;角速度ω= + o 地 ( + ) 3 , 选项 B 错误;加速度大小 a= o 地 ( + ) 2 ,选项 C 正确;周期为 T=2π(R+H) + o 地 ,选项 D 错误。 答案 C 3.科学家们推测,太阳系内除八大行星之外还有另一颗行星就在地球的轨道上,从地球上看,它 永远在太阳的背面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”。由以上信息 可以确定( ) A.这颗行星的公转周期与地球相等 B.这颗行星的半径等于地球的半径 C.这颗行星的密度等于地球的密度 D.这颗行星上同样存在着生命 解析因只知道这颗行星的轨道半径,所以只能判断出其公转周期与地球的公转周期相等。由 G o 太 o 2 =m 2 可知,行星的质量在方程两边可以消去,无法求出其质量,因此无法知道其密度。 答案 A 4.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v。假设宇航员在该行星表面上 用弹簧测力计测量一质量为 m 的物体重力,物体静止时,弹簧测力计的示数为 F。已知引力常量 为 G,则这颗行星的质量为( ) A. o 2 B. o 4 C. 2 o D. 4 o解析设卫星的质量为 m' 由万有引力提供向心力,得 G o 行 o ' 2 =m' 2 ① m'g= o ' 2 ② 由已知条件,m 的重力为 F 得 F=mg③ 由②③得 R= o 2 ④ ④代入①得 m 行= o 4 ,故 A、C、D 三项均错误,B 正确。 答案 B 5.若取地球的第一宇宙速度为 8 km/s,某行星的质量是地球质量的 6 倍,半径是地球半径的 1.5 倍,此行星的第一宇宙速度约为( ) A.16 km/s B.32 km/s C.4 km/s D.2 km/s 解析第一宇宙速度是行星表面卫星的环绕速度,对于卫星,其轨道半径近似等于星球半径,所受 万有引力提供其做匀速圆周运动的向心力,根据万有引力定律和牛顿第二定律得 G o 地 o 2 =m 2 , 解得 v= o 地 。因为该行星的质量 m 星是地球质量 m 地的 6 倍,半径 R'是地球半径 R 的 1.5 倍, 则 ' o 星 ' Gm 地 R o 星 o 地 '=2,故 v'=2v=2×8km/s=16km/s,A 正确。 答案 A 6.(2019 山东德州高一检测)北京时间 2019 年 4 月 10 日 21 时,在全球七大城市同时发布由“事件 视界望远镜”观测到位于室女 A 星系(M87)中央的超大质量黑洞的照片,如图所示。若某黑洞半 径 R 约为 45 km,质量 M 和半径 R 满足的关系为 2 2 (其中 c 为光速,c=3.0×108 m/s,G 为引力 常量),则估算该黑洞表面重力加速度的数量级为( ) A.1010 m/s2 B.1012 m/s2 C.1014 m/s2 D.1016 m/s2 解析黑洞实际为一天体,天体表面的物体受到的重力近似等于物体与该天体之间的万有引力, 对黑洞表面的某一质量为 m 的物体有:G o 2 =mg,又有 2 2 ,联立解得 g= 2 2 ,代入数据得重力加 速度的数量级为 1012m/s2,选项 B 正确。 答案 B 7.质量为 m 的卫星在离地面 R0 处做匀速圆周运动。设地球的半径也为 R0,地面的重力加速度为 g,引力常量为 G,不考虑地球自转的影响。求: (1)地球的质量; (2)卫星的线速度大小。 解析(1)对地面上质量为 m 的物体有 mg=G o 0 2 解得 M= 0 2 (2)设卫星的线速度为 v,卫星做圆周运动的向心力等于万有引力 o( 2 0 ) 2 =m 2 2 0 解得 v= 0 2答案(1) 0 2 (2) 0 28. 如图所示,火箭内平台上放有测试仪器,火箭从地面启动后,以加速度 2 (g 为地面附近的重力加速 度)竖直向上匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的 17 18 。已知地球半 径为 R,求火箭此时离地面的高度。 解析启动前测试仪对平台的压力 N1=mg① 设火箭离地面的高度为 h 时,测试仪对平台的压力大小为 N2,根据牛顿第三定律,平台对测 试仪的支持力大小也等于 N2 的大小。 对测试仪由牛顿第二定律得 N2-mg'=m 2 ② 由题意得 2 1 17 18 ③ 由①②③式解得 g'= 4 9 g④ 根据万有引力定律知 mg=G o 地 o 2 ,g= o 地 2 ⑤ mg'=G o 地 o( + ) 2 ,g'= o 地 ( + ) 2 ⑥ 则由④⑤⑥三式得 h= 2 。 答案 2 能力提升 1.如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,若 天文学家测得在相同时间内水星转过的角度为θ1;金星转过的角度为θ2(θ1、θ2 均为锐角),则由此 条件不可求得的是( ) A.水星和金星绕太阳运动的周期之比 B.水星和金星绕太阳运动的向心加速度大小之比 C.水星和金星到太阳的距离之比 D.水星和金星的密度之比 解析相同时间内水星转过的角度为θ1,金星转过的角度为θ2,可知它们的角速度之比为θ1∶θ2。周 期 T= 2π ,则周期比为θ2∶θ1,选项 A 可求;万有引力提供向心力 G o 太 o 2 =mω2r,知道角速度比,就可 求出轨道半径之比,选项 C 可求;根据 a=rω2,轨道半径之比、角速度之比都知道,则可求出向心 加速度之比,选项 B 可求;水星和金星是环绕天体,无法求出它们的质量,也无法知道它们的半径, 所以求不出密度比,选项 D 不可求。 答案 D 2.星球上的物体脱离星球引力所需的最小速度称为该星球的第二宇宙速度,星球的第二宇宙速 度 v2 与其第一宇宙速度 v1 的关系是 v2= 2 v1。已知某星球的半径为 r,表面的重力加速度为地球 表面重力加速度 g 的 1 6 ,不计其他星球的影响,则该星球的第二宇宙速度为( ) A. B. 1 6 C. 1 3 D. 1 3 gr 解析 1 6 mg=m 12 得 v1= 1 6 。再根据 v2= 2 v1 得 v2= 1 3 ,故 C 选项正确。 答案 C 3.(2019 山东烟台联考)2018 年 11 月 1 日,我国成功发射第四十一颗北斗导航卫星,这颗卫星属于 地球同步卫星;2019 年 1 月 3 日,我国发射的嫦娥四号探测器在月球背面成功着陆,开启了人类 探测月球的新篇章。若嫦娥四号绕月球做匀速圆周运动的半径是第四十一颗北斗导航卫星绕 地球运行的轨道半径的 1 ,月球质量为地球质量的 1 ,则嫦娥四号绕月球做匀速圆周运动的周期与 第四十一颗北斗导航卫星绕地球运行的周期之比为( ) A. 3 B. 3 C. 1 3 D. 3 解析根据 o 2 =m 4π2 2 可得 T= 4π2 3 ,则 嫦娥 北斗 ( 嫦娥 北斗 ) 3 × 地 月 1 3 × 3 ,选项 A 正确。 答案 A 4.假设地球可视为质量均匀分布的球体。已知地球表面重力加速度在两极的大小为 g0,在赤道 的大小为 g;地球自转的周期为 T,引力常量为 G。地球的密度为( ) A. 3π ( 0 - ) 2 0 B. 3π 0 2 ( 0 - ) C. 3π 2 D. 3π 0 2 解析物体在地球的两极时,mg0=G o 2 ,物体在赤道上时,mg+m 2π 2R=G o 2 ,地球质量 M= 4 3 πR3·ρ, 以上三式联立解得地球的密度ρ= 3π 0 2 ( 0 - )。故选项 B 正确,选项 A、C、D 错误。 答案 B 5.(2019 四川遂宁期末)预计我国将在 2030 年前后实现航天员登月计划。航天员登上月球后进 行相关的科学探测与实验。已知月球的半径为 R,月球表面的重力加速度为 g,引力常量为 G(球 体体积公式 V= 4 3 πR3)。求: (1)月球的质量 M; (2)月球的第一宇宙速度 v; (3)月球的平均密度ρ。 解析(1)月球表面物体的重力等于万有引力 G o 2 =mg① 解得月球的质量 M= 2 。② (2)在月球表面所需的最小发射速度即为第一宇宙速度, 有 G o 2 =m 2 ③ 由①③式得:v= 。④ (3)月球的平均密度ρ= ⑤ 月球的体积 V= 4 3 πR3⑥ 联立②⑤⑥式得:ρ= 3 4π 。 答案(1) 2 (2) (3) 3 4π 6.恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星,中子星的半径很小,一般为 7~20 km,但它的密度大得惊人。若某中子星的密度为 1.2×1017 kg/m3,半径为 10 km,那么该中子 星的第一宇宙速度约为多少?(G=6.67×10-11 N·m2/kg2)(结果保留两位有效数字) 解析中子星的第一宇宙速度即为它表面卫星的环绕速度,此时卫星的轨道半径可近似认为是中 子星的半径,且中子星对卫星的万有引力充当卫星的向心力,由 G o 2 =m 2 ,得 v= , 又 M=ρV=ρ 4 3 πR3, 解得 v=R 4π 3 =1×104× 4×3 . 14×6 . 67×10 - 11×1 . 2×1017 3 m/s =5.8×107m/s=5.8×104km/s。 答案 5.8×104 km/s查看更多