江苏高考立体几何含解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

江苏高考立体几何含解析

‎2018年-2008年江苏高考立体几何解答题(共11题)‎ 说明:三角向量解答题考在15题或16题,是解答题的前两题之一,要求学生必须做对,而且书写规范,条理清楚 1. 在平行六面体中,.‎ 求证:(1); (2).‎ ‎2.如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.‎ ‎ 求证:(1)EF∥平面ABC; (2)AD⊥AC.‎ ‎3. 如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,.‎ 求证:(1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F. ‎ ‎4.如图,在直三棱柱中,已知,,设的中点为,.求证:‎ ‎(1); (2).‎ ‎5.如图在三棱锥中,分别为棱的中点,已知,‎ 求证(1)直线平面; (2)平面平面。‎ ‎6.如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:‎ ‎(1)平面平面; (2).‎ ‎7. 如图,在直三棱柱中,,分别是棱上的点(点D 不同于点C),且为的中点.‎ 求证:(1)平面平面; (2)直线平面ADE.‎ ‎8、如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD ‎9、如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。‎ (1) 求证:PC⊥BC; (2)求点A到平面PBC的距离。‎ ‎10.如图,在直三棱柱中,、分别是、的中点,点在上,。 ‎ 求证:(1)EF∥平面ABC;w.w.w.k.s.5.u.c.o.m (2)平面平面.‎ ‎11.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,‎ 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC⊥平面BCD .‎ 解析如下:‎ ‎1.(本小题满分14分)‎ 在平行六面体中,.‎ 求证:(1);‎ (2) ‎.‎ ‎15.【答案】(1)见解析;(2)见解析.‎ ‎【解析】(1)在平行六面体中,.‎ 因为平面,平面,所以平面.‎ ‎(2)在平行六面体中,四边形为平行四边形.‎ 又因为,所以四边形为菱形,‎ 因此.又因为,,所以.‎ 又因为,平面,平面,‎ 所以平面.因为平面,‎ 所以平面平面.‎ ‎2.(本小题满分14分) 如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.‎ ‎ 求证:(1)EF∥平面ABC;‎ ‎ (2)AD⊥AC.‎ ‎【答案】(1)见解析(2)见解析 ‎【解析】证明:(1)在平面内,因为AB⊥AD,,所以.‎ ‎3. (本小题满分14分)‎ 如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,.‎ 求证:(1)直线DE∥平面A1C1F;‎ ‎(2)平面B1DE⊥平面A1C1F. ‎ ‎【答案】(1)详见解析(2)详见解析 ‎4.(本题满分14分)如图,在直三棱柱中,已知,,设的中点为,.求证:‎ ‎(1); (2).‎ ‎【答案】(1)详见解析(2)详见解析 ‎【解析】‎ 试题分析:(1)由三棱锥性质知侧面为平行四边形,因此点为的中点,从而由三角形中位线性质得,再由线面平行判定定理得(2)因为直三棱柱中,所以侧面为正方形,因此,又,(可由直三棱柱推导),因此由线面垂直判定定理得,从而,再由线面垂直判定定理得,进而可得 ‎5.(满分14分)如图在三棱锥中,分别为棱的中点,已知,‎ 求证(1)直线平面;‎ ‎(2)平面平面。‎ ‎ ‎ ‎6.如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:‎ ‎(1)平面平面;‎ ‎(2).‎ 证:(1)因为SA=AB且AF⊥SB,‎ 所以F为SB的中点.‎ 又E,G分别为SA,SC的中点,‎ 所以,EF∥AB,EG∥AC.‎ 又AB∩AC=A,AB面SBC,AC面ABC,‎ 所以,平面平面.‎ ‎(2)因为平面SAB⊥平面SBC,平面SAB∩平面SBC=BC,‎ AF平面ASB,AF⊥SB.‎ 所以,AF⊥平面SBC.‎ 又BC平面SBC,‎ 所以,AF⊥BC.‎ 又AB⊥BC,AF∩AB=A,‎ 所以,BC⊥平面SAB.‎ 又SA平面SAB,‎ 所以,.‎ ‎7. 如图,在直三棱柱中,,分别是棱上的点(点D 不同于点C),且为的中点.‎ 求证:(1)平面平面;‎ ‎ (2)直线平面ADE.‎ ‎【答案及解析】‎ ‎【命题意图】本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.‎ ‎【证明】(1)∵是直棱柱, ∴⊥面ABC, ‎ ‎∵AD面ABC, ∴⊥AD,‎ ‎∵AD⊥DE,面,DE面,,‎ ‎∴AD⊥面, ∵AD面ADE, ∴面ADE⊥面.‎ ‎(2) ∵=,F为的中点, ∴⊥,‎ ‎∵⊥面,且面, ∴⊥,‎ ‎∵面,面,∩=,‎ ‎∴⊥面, 由(1)知,AD⊥面, ∴∥AD.‎ ‎∵AD面ADE,面ADE, ∴∥面ADE..‎ ‎8、(本小题满分14分)如图,在四棱锥中,平面PAD⊥平面ABCD,‎ AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;‎ ‎(2)平面BEF⊥平面PAD 解析:简单考察空间想象能力和推理论证能力、线面平行和垂直的判定与性质,容易题。‎ ‎(1)因为E、F分别是AP、AD的中点,‎ 又 直线EF‖平面PCD ‎(2) F是AD的中点,‎ 又平面PAD⊥平面ABCD,‎ 所以,平面BEF⊥平面PAD。‎ ‎9、(本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。‎ (1) 求证:PC⊥BC;‎ (2) 求点A到平面PBC的距离。‎ ‎[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。‎ ‎(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。‎ 由∠BCD=900,得CD⊥BC,‎ 又PDDC=D,PD、DC平面PCD,‎ 所以BC⊥平面PCD。‎ 因为PC平面PCD,故PC⊥BC。‎ ‎(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:‎ 易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。‎ 又点A到平面PBC的距离等于E到平面PBC的距离的2倍。‎ 由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,‎ 因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。‎ 易知DF=,故点A到平面PBC的距离等于。‎ ‎(方法二)体积法:连结AC。设点A到平面PBC的距离为h。‎ 因为AB∥DC,∠BCD=900,所以∠ABC=900。‎ 从而AB=2,BC=1,得的面积。‎ 由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。‎ 因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。‎ 又PD=DC=1,所以。‎ 由PC⊥BC,BC=1,得的面积。‎ 由,,得,‎ 故点A到平面PBC的距离等于。‎ ‎10.(本小题满分14分) ‎ 如图,在直三棱柱中,、分别是、的中点,点在上,。 ‎ 求证:(1)EF∥平面ABC;w.w.w.k.s.5.u.c.o.m ‎ ‎(2)平面平面.‎ ‎【解析】 本小题主要考查直线与平面、平面与平面得位置关系,考查空间想象能力、推理论证能力。满分14分。‎ ‎11.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,‎ 求证:(Ⅰ)直线EF ∥面ACD ;‎ ‎(Ⅱ)面EFC⊥面BCD .‎ ‎【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定.‎ 解:(Ⅰ)∵ E,F 分别是AB,BD 的中点,‎ ‎∴EF 是△ABD 的中位线,∴EF∥AD,‎ ‎∵EF面ACD ,AD 面ACD ,∴直线EF∥面ACD .‎ ‎(Ⅱ)∵ AD⊥BD ,EF∥AD,∴ EF⊥BD.‎ ‎∵CB=CD, F 是BD的中点,∴CF⊥BD.‎ 又EFCF=F,∴BD⊥面EFC.∵BD面BCD,∴面EFC⊥面BCD .‎
查看更多

相关文章

您可能关注的文档