【数学】2019届一轮复习人教A版集合与常用逻辑用语(理)学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版集合与常用逻辑用语(理)学案

专题01 集合与常用逻辑用语 易错点1 忽略集合中元素的互异性 设集合,若,则实数的值为 A. B.‎ C. D.或或 ‎【错解】由得或,解得或或,所以选D.‎ ‎【错因分析】在实际解答过程中,很多同学只是把答案算出来后就不算了,根本不考虑求解出来的答案是不是合乎题目要求,有没有出现遗漏或增根.在实际解答中要根据元素的特征,结合题目要求和隐含条件,加以重视.当时,A=B={1,1,y},不满足集合元素的互异性;当时,A=B={1,1,1}也不满足元素的互异性;当时,A=B={1,−1,0},满足题意.‎ 集合中元素的特性:‎ ‎(1)确定性.‎ ‎ 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;‎ ‎(2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素 ‎(3)无序性. 集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系 ‎1.集合{x–1,x2–1,2}中的x不能取得值是 A.2 B.3 ‎ C.4 D.5‎ ‎【解析】当x=2时,x–1=1,x2–1=3,满足集合元素的互异性,集合表示正确;当x=3时,x–1=2,集合中元素重复,不满足互异性,集合表示错误;当x=4时,x–1=3,x2–1=15,满足集合元素的互异性,集合表示正确;当x=5时,x–1=4,x2–1=24,满足集合元素的互异性,集合表示正确;故选B.‎ ‎【答案】B 易错点2 误解集合间的关系致错 已知集合,则下列关于集合A与B的关系正确的是 A. B.‎ C. D.‎ ‎【错解】因为,所以,所以,故选B.‎ ‎【错因分析】判断集合之间的关系不能仅凭表面的理解,应当注意观察集合中的元素之间的关系.集合之间一般为包含或相等关系,但有时也可能为从属关系.解题时要思考两个问题:(1)两个集合中的元素分别是什么;(2)两个集合中元素之间的关系是什么.本题比较特殊,集合B中的元素就是集合,当集合A是集合B的元素时,A与B是从属关系.‎ ‎【试题解析】因为,所以,则集合是集合B中的元素,所以 ‎,故选D.‎ ‎【参考答案】D  ‎(1)元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征.‎ ‎(2)包含、真包含关系是集合与集合之间的关系,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作(或);如果集合,但存在元素,且,我们称集合是集合的真子集,记作(或).学 ‎ ‎2.若集合,,则有 A. B. ‎ C. D.‎ ‎【答案】B 易错点3 忽视空集易漏解 已知集合,,若,则实数m的取值范围是 A. B.‎ C. D.‎ ‎【错解】∵,∴,∴.‎ 由知,∴,则.‎ ‎∴m的取值范围是.‎ ‎【错因分析】空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.由并集的概念知,对于任何一个集合A,都有,所以错解中忽略了时的情况.‎ ‎【试题解析】∵,∴.,‎ ‎①若,则,即,故时,;‎ ‎②若,如图所示,‎ 则,即.‎ 由得,解得.又∵,∴.‎ 由①②知,当时,.‎ ‎【参考答案】C ‎(1)对于任意集合A,有,,所以如果,就要考虑集合可能是;如果,就要考虑集合可能是.‎ ‎(2)空集是任何集合的子集,是任何非空集合的真子集,即,.‎ ‎3.集合,若,则实数的取值范围是 A. B. ‎ C. D.‎ ‎【解析】当时,集合,满足题意;当时,,若,则,∴,所以,故选B.‎ ‎【答案】B 易错点4 A是B的充分条件与A的充分条件是B的区别 设,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 ‎【错解】选A.‎ ‎【错因分析】充分必要条件的概念混淆不清致错.‎ ‎【试题解析】若,则,但当时也有,故本题选B.‎ ‎【参考答案】B ‎(1)“A的充分不必要条件是B”是指B能推出A,且A不能推出B,即B⇒A且AB;‎ ‎(2)“A是B的充分不必要条件”则是指A能推出B,且B不能推出A,即A⇒B且.‎ ‎4.已知,,若的一个充分不必要条件是,则实数的取值范围是 A. B. ‎ C. D.‎ ‎【解析】由基本不等式得,,由,又因为的一个充分不必要条件是,则,故选A.‎ ‎【答案】A 易错点5 命题的否定与否命题的区别 命题“且”的否定形式是 A. B. ‎ C. D.‎ ‎【错因分析】错解1对命题的结论否定错误,没有注意逻辑联结词;‎ 对于错解2,除上述错误外,还没有否定量词;‎ 错解3的结论否定正确,但忽略了对量词的否定而造成错选.‎ ‎【试题解析】全称命题的否定为特称命题,因此命题“且”的否定形式是“ ”.故选D.‎ ‎【参考答案】D ‎1.命题的否定与否命题 ‎“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.‎ ‎2.命题的否定 ‎(1)对“若p,则q”形式命题的否定;‎ ‎(2)对含有逻辑联结词命题的否定;‎ ‎(3)对全称命题和特称命题的否定.‎ ‎(4)全称(或存在性)命题的否定与命题的否定有着一定的区别,全称(或存在性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题.‎ ‎5.已知,则¬p是¬q A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 ‎【答案】A 将命题的否定形式错误地认为:,∴x2+4x−5<0导致错误.‎ 一、集合 ‎1.元素与集合的关系:.‎ ‎2.集合中元素的特征:‎ ‎(1)确定性:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.‎ ‎(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.学! ‎ ‎(3)无序性:集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系.‎ ‎3.常用数集及其记法:‎ 集合 非负整数集(自然数集)‎ 正整数集 整数集 有理数集 实数集 复数集 符号 或 ‎4.集合间的基本关系 ‎ 表示 关系 自然语言 符号语言 图示 基 本基本关系 子集 集合A中任意一个元素都是集合B的元素 ‎(或 ‎)‎ 真子集 集合A是集合B的子集,且集合B中至少有一个元素不在集合A中 ‎(或 ‎)‎ 相等 集合A,B中元素相同或集合A,B互为子集 空集 空集是任何集合的子集,是任何非空集合的真子集 ‎,‎ ‎ ‎ ‎(1)若集合A中含有n个元素,则有个子集,有个非空子集,有个真子集,有个非空真子集.‎ ‎(2)子集关系的传递性,即.‎ ‎(3)空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.‎ ‎5.集合的基本运算 运算 自然语言 符号语言 Venn图 交集 由属于集合A且属于集合B的所有元素组成的集合 ‎ ‎ 并集 由所有属于集合A或属于集合B的元素组成的集合 ‎ ‎ 补集 由全集U中不属于集合A的所有元素组成的集合 ‎ ‎ ‎(1)集合运算的相关结论 交集 并集 补集 ‎(2)‎ 二、命题及其关系、充分条件与必要条件 ‎1.四种命题 命题 表述形式 原命题 若p,则q 逆命题 若q,则p 否命题 若,则 逆否命题 若,则 ‎2.四种命题间的关系 ‎(1)常见的否定词语 正面词语 ‎=‎ ‎>(<)‎ 是 都是 任意(所有)的 任两个 至多有1(n)个 至少有1个 否定词 ‎()‎ 不是 不都是 某个 某两个 至少有2(n+1)个 ‎1个也没有 ‎(2)四种命题的真假关系 ‎①两个命题互为逆否命题,它们有相同的真假性;‎ ‎②两个命题互为逆命题或互为否命题,它们的真假性没有关系.‎ ‎3.充分条件与必要条件的概念 ‎(1)若p⇒q,则p是q的充分条件,q是p的必要条件;‎ ‎(2)若p⇒q且qp,则p是q的充分不必要条件;‎ ‎(3)若pq且q⇒p,则p是q的必要不充分条件;‎ ‎(4) 若p⇔q,则p是q的充要条件; ‎ ‎(5) 若pq且qp,则p是q的既不充分也不必要条件.‎ ‎(1)等价转化法判断充分条件、必要条件 ‎①p是q的充分不必要条件是的充分不必要条件;‎ ‎②p是q的必要不充分条件是的必要不充分条件;‎ ‎③p是q的充要条件是的充要条件;‎ ‎④p是q的既不充分也不必要条件是的既不充分也不必要条件.‎ ‎(2)集合判断法判断充分条件、必要条件 ‎ 若p以集合A的形式出现,q以集合B的形式出现,即p:A={x|p(x) },q:B={x|q(x) },则 ‎①若,则p是q的充分条件;‎ ‎②若,则p是q的必要条件;‎ ‎③若,则p是q的充分不必要条件;‎ ‎④若,则p是q的必要不充分条件;‎ ‎⑤若,则p是q的充要条件;‎ ‎⑥若且,则p是q的既不充分也不必要条件.‎ 三、逻辑联结词、全称量词与存在量词 ‎1.常见的逻辑联结词:或、且、非 一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作,读作“p且q”;‎ 用联结词“或”把命题p和q联结起来,得到一个新命题,记作,读作“p或q”;‎ 对一个命题p的结论进行否定,得到一个新命题,记作,读作“非p”.‎ ‎2.复合命题的真假判断 ‎“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:‎ p q 真 真 假 假 真 真 真 假 假 真 真 假 假 真 真 假 真 假 假 假 真 真 假 假 ‎3.全称量词和存在量词 量词名称 常见量词 符号表示 全称量词 所有、一切、任意、全部、每一个等 存在量词 存在一个、至少一个、有些、某些等 ‎4.含有一个量词的命题的否定 全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:‎ 命题 命题的否定 含有逻辑联结词的命题的真假判断:‎ ‎(1)中一假则假,全真才真.‎ ‎(2)中一真则真,全假才假.‎ ‎(3)p与真假性相反.‎ 注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.不能混淆这两者的概念.‎ ‎1.(2018浙江)已知全集U={1,2,3,4,5},A={1,3},则 A. B.{1,3}‎ C.{2,4,5} D.{1,2,3,4,5}‎ ‎【答案】C ‎【解析】因为全集,,所以根据补集的定义得,故选C.‎ ‎2.(2018新课标全国Ⅰ理 )已知集合,则 A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】B ‎【解析】解不等式得,所以,所以可以求得,故选B.‎ ‎3.(2018新课标全国Ⅲ理 )已知集合,,则 A. B.‎ C. D.‎ ‎【答案】C ‎【解析】易得集合,所以,故选C.‎ ‎4.(2018新课标全国Ⅱ理 )已知集合,则中元素的个数为 ‎ A.9 B.8‎ C.5 D.4‎ ‎【答案】A ‎【解析】,当时,;当时,;当时,,所以共有9个元素,选A.‎ ‎5.(2018浙江)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的 A.充分不必要条件 B.必要不充分条件 ‎ C.充分必要条件 D.既不充分也不必要条件 ‎【答案】A ‎【名师点睛】充分、必要条件的三种判断方法:‎ ‎(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.‎ ‎(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.‎ ‎(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.‎ ‎6.(2018天津理 )设,则“”是“”的 ‎ A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.‎ ‎7.(2017北京理 )设m,n为非零向量,则“存在负数,使得”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】若,使,则两向量反向,夹角是,那么;若,那么两向量的夹角为,并不一定反向,即不一定存在负数,使得,所以是充分而不必要条件,故选A.‎ ‎8.(2016上海理 )设,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎ ‎【解析】或,所以是充分不必要条件,故选A.‎ ‎9.(2017新课标Ⅱ卷理)设集合,.若,则 A. B.‎ C. D.‎ ‎【答案】C ‎【解析】由得,即是方程的根,所以,,故选C.‎ ‎【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.‎ ‎10.(2017新课标Ⅲ卷理)已知集合A=,B=,则AB中元素的个数为 A.3 B.2‎ C.1 D.0‎ ‎【答案】B ‎【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.‎ ‎11.(2016浙江卷理)命题“,使得”的否定形式是 A.,使得 B.,使得 ‎ C.,使得 D.,使得 ‎【答案】D ‎【解析】的否定是,的否定是,的否定是.故选D.‎ ‎12.(2017北京卷理)设m,n为非零向量,则“存在负数,使得”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】若,使,则两向量反向,夹角是,那么;若,那么两向量的夹角为,并不一定反向,即不一定存在负数,使得,所以是充分而不必要条件,故选A.‎ ‎【名师点睛】判断充分必要条件的的方法:‎ ‎(1)根据定义,若,那么是的充分不必要条件,同时是的必要不充分条件;若,那么,互为充要条件;若,那么就是既不充分也不必要条件.‎ ‎(2)当命题是以集合形式给出时,那就看包含关系,已知,若,那么是的充分不必要条件,同时是的必要不充分条件;若,那么,互为充要条件;若没有包含关系,那么就是既不充分也不必要条件.‎ ‎(3)命题的等价性,根据互为逆否命题的两个命题等价,将是条件的判断,转化为是条件的判断.‎ ‎13.(2017天津卷理)设,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】,但时,不满足,所以“”是“”的充分而不必要条件,故选A.‎ ‎【名师点睛】本题考查充要条件的判断,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件;从集合的角度看,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件,若是的真子集,则是的充分而不必要条件,若是的真子集,则是的必要而不充分条件.‎ ‎14.已知集合,则实数a的值为 A.−1 B.0 ‎ C.1 D.2‎ ‎【答案】A ‎【解析】由题意,1+a=0,∴a=−1,本题选择A选项.‎ ‎15.已知集合,,则 A. B.‎ C. D.‎ ‎【答案】C ‎【名师点睛】对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考查等号能否取到.‎ ‎16.设命题p:,则为 A. B.‎ C. D.‎ ‎【答案】C ‎【解析】命题p:,则为.故选C.‎ ‎17.“若,则,都有成立”的逆否命题是 A.,有成立,则 ‎ B.,有成立,则 C.,有成立,则 ‎ D.,有成立,则 ‎【答案】D ‎【解析】由原命题与逆否命题的关系可得:“若,则,都有成立”的逆否命题是“,有成立,则”.本题选择D选项.‎ ‎18.已知集合,集合,则集合 A. B. ‎ C. D.‎ ‎【答案】C ‎【解析】根据题意可得,,解得,满足题意,所以集合=故选C.‎ ‎19.已知集合,,若,则实数的取值范围是 A. B. ‎ C. D.‎ ‎【答案】A ‎【解析】由题意可知:,结合集合B和题意可得实数的取值范围是.本题选择A选项.‎ ‎20.“”是“函数在区间无零点”的 A.充分不必要条件 B.必要不充分条件 ‎ C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】若函数在区间无零点,则,故选A.学 ! ‎ ‎21.设、都是非零向量,下列四个条件中,使成立的充分条件是 A. B. ‎ C. D.且 ‎【答案】C ‎【解析】因为时表示两向量的方向相反,所以不是充分条件;当时,也不能推出,故也不充分;‎ 当时,能够推出,故是充分条件;‎ 而且则是成立的既不充分也不必要条件,‎ 应选C.‎ ‎22.已知命题:对任意,总有是的充分不必要条件,则下列命题为真命题的是 A. B. ‎ C. D.‎ ‎【答案】A ‎23.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是 A. B. ‎ C. D.‎ ‎【答案】B ‎【解析】命题p:,为,又为真命题的充分不必要条件为,故 ‎24.在射击训练中,某战士射击了两次,设命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 A.为真命题 B.为真命题 C.为真命题 D.为真命题 ‎【答案】A ‎【解析】命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题是“第一次射击没击中目标”,命题是“第二次射击没击中目标”,命题 “两次射击中至少有一次没有击中目标”是,故选A.‎ ‎25.(2018北京理 )能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.‎ ‎【答案】 (答案不唯一)‎ ‎【解析】对于,其图象的对称轴为,则f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不是单调函数.‎ ‎26.已知集合,集合,若,则实数=________.‎ ‎【答案】1‎ ‎【解析】由题意得,验证满足.‎ ‎【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.‎ ‎(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.‎ ‎(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.‎ ‎27.若命题“”是假命题,则的取值范围是__________.‎ ‎【答案】‎ ‎【解析】因为命题“”是假命题,所以为真命题,即,故答案为.‎ ‎28.已知条件,条件,若是的充分不必要条件,则实数的取值范围是______.‎ ‎【答案】‎ ‎【解析】条件p:log2(1−x)<0,∴0<1−x<1,解得0a,‎ 若p是q的充分不必要条件,∴.‎ 则实数a的取值范围是:(−∞,0].‎ 故答案为:(−∞,0].‎ ‎29.下列有关命题的说法一定正确的是________.(填序号)‎ ‎①命题“, ”的否定是“, ”‎ ‎②若向量,则存在唯一的实数使得 ‎③若函数在上可导,则是为函数极值点的必要不充分条件 ‎④若“”为真命题,则“”也为真命题 ‎【答案】③‎ ‎30.命题:若,则;命题:若,则恒成立.若的逆命题, 的逆否命题都是真命题,则实数的取值范围是__________.‎ ‎【答案】‎ ‎【解析】命题的逆命题:若,则,故;‎ 命题的逆否命题为真命题,故原命题为真命题,则,;‎ 则实数的取值范围是.‎ ‎________________________________________________________________________________________‎ ‎________________________________________________________________________________________‎ ‎________________________________________________________________________________________‎ ‎________________________________________________________________________________________‎ ‎________________________________________________________________________________________‎ ‎________________________________________________________________________________________‎ ‎______________________________________________________________________________________‎
查看更多

相关文章

您可能关注的文档