【数学】2020届一轮复习(文)江苏专版板块命题点专练(十)立体几何

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习(文)江苏专版板块命题点专练(十)立体几何

板块命题点专练(十) 立体几何 命题点一 空间几何体的表面积与体积 ‎ ‎1.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.‎ 解析:由题意知所给的几何体是棱长均为的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V正四棱锥=2××()2×1=.‎ 答案: ‎2.(2015·江苏高考)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.‎ 解析:设新的底面半径为r,由题意得 ×π×52×4+π×22×8=×π×r2×4+π×r2×8,‎ 解得r2=7,所以r=.‎ 答案: ‎3.(2014·江苏高考)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是________.‎ 解析:设甲、乙两个圆柱的底面半径分别是r1,r2,母线长分别是l1,l2.则由=可得=.又两个圆柱的侧面积相等,即2πr1l1=2πr2l2,则==,所以==×=.‎ 答案: ‎4.(2018·天津高考)已知正方体ABCD A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH的体积为________.‎ 解析:连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1‎ 的中点,所以EH∥AC,EH=AC,因为F,G分别为B1A,B1C的中点,所以FG∥AC,FG=AC,所以EH∥FG,EH=FG,所以四边形EHGF为平行四边形,又EG=HF,EH=HG,所以四边形EHGF为正方形,又点M到平面EHGF的距离为,所以四棱锥M EFGH的体积为×2×=.‎ 答案: ‎5.(2017·全国卷Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.‎ 解析:由题意知,长方体的体对角线长为=,‎ 记长方体的外接球的半径为R,则有2R=,‎ R=,因此球O的表面积为S=4πR2=14π.‎ 答案:14π ‎6.(2018·全国卷Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.‎ ‎(1)证明:平面ACD⊥平面ABC;‎ ‎(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ABP的体积.‎ 解:(1)证明:由已知可得,∠BAC=90°,即AB⊥AC.‎ 又因为AB⊥DA,AC∩DA=A,‎ 所以AB⊥平面ACD.‎ 因为AB⊂平面ABC,‎ 所以平面ACD⊥平面ABC.‎ ‎(2)由已知可得,DC=CM=AB=3,DA=3.‎ 又BP=DQ=DA,所以BP=2.‎ 如图,过点Q作QE⊥AC,垂足为E,则QE綊DC.‎ 由已知及(1)可得,DC⊥平面ABC,‎ 所以QE⊥平面ABC,QE=1.‎ 因此,三棱锥Q ABP的体积为VQ ABP=×S△ABP×QE=××3×2sin 45°×1=1.‎ ‎7.(2017·北京高考)如图,在三棱锥PABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.‎ ‎(1)求证:PA⊥BD;‎ ‎(2)求证:平面BDE⊥平面PAC;‎ ‎(3)当PA∥平面BDE时,求三棱锥EBCD的体积.‎ 解:(1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,‎ 所以PA⊥平面ABC.‎ 又因为BD⊂平面ABC,‎ 所以PA⊥BD.‎ ‎(2)证明:因为AB=BC,D为AC的中点,‎ 所以BD⊥AC.‎ 由(1)知,PA⊥BD,又AC∩PA=A,‎ 所以BD⊥平面PAC.‎ 因为BD⊂平面BDE,‎ 所以平面BDE⊥平面PAC.‎ ‎(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,‎ 所以PA∥DE.‎ 因为D为AC的中点,‎ 所以DE=PA=1,BD=DC=.‎ 由(1)知,PA⊥平面ABC,‎ 所以DE⊥平面ABC.‎ 所以三棱锥EBCD的体积V=BD·DC·DE=.‎ ‎8.(2017·全国卷Ⅰ)如图,在四棱锥PABCD中,AB∥CD ‎,且∠BAP=∠CDP=90°.‎ ‎(1)证明:平面PAB⊥平面PAD;‎ ‎(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.‎ 解:(1)证明:由∠BAP=∠CDP=90°,‎ 得AB⊥AP,CD⊥PD.‎ 因为AB∥CD,所以AB⊥PD.‎ 又AP∩PD=P,‎ 所以AB⊥平面PAD.‎ 又AB⊂平面PAB,所以平面PAB⊥平面PAD.‎ ‎(2)如图所示,在平面PAD内作PE⊥AD,垂足为E.‎ 由(1)知,AB⊥平面PAD,‎ 故AB⊥PE,可得PE⊥平面ABCD.‎ 设AB=x,则由已知可得AD=x,PE=x.‎ 故四棱锥PABCD的体积VPABCD=AB·AD·PE=x3.‎ 由题设得x3=,故x=2.‎ 从而PA=PD=AB=DC=2,AD=BC=2,PB=PC=2.‎ 可得四棱锥PABCD的侧面积为 PA·PD+PA·AB+PD·DC+BC2sin 60°=6+2.‎ 命题点二 直线、平面平行与垂直的判定与性质 ‎1.(2018·江苏高考)在平行六面体ABCD A1B1C1D1中,AA1=AB,AB1⊥B1C1.‎ 求证:(1)AB∥平面A1B1C;‎ ‎(2)平面ABB1A1⊥平面A1BC.‎ 证明:(1)在平行六面体ABCD A1B1C1D1中,AB∥A1B1.‎ 因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,‎ 所以AB∥平面A1B1C.‎ ‎(2)在平行六面体ABCD A1B1C1D1中,‎ 四边形ABB1A1为平行四边形.‎ 又因为AA1=AB,所以四边形ABB1A1为菱形,‎ 因此AB1⊥A1B.‎ 因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.‎ 因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,‎ 所以AB1⊥平面A1BC.‎ 因为AB1⊂平面ABB1A1,‎ 所以平面ABB1A1⊥平面A1BC.‎ ‎2.(2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.‎ ‎(1)证明:平面AMD⊥平面BMC.‎ ‎(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.‎ 解:(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.‎ 因为BC⊥CD,BC⊂平面ABCD,‎ 所以BC⊥平面CMD,‎ 又DM⊂平面CMD,所以BC⊥DM.‎ 因为M为上异于C,D的点,且CD为直径,‎ 所以DM⊥MC.‎ 又BC∩MC=C,所以DM⊥平面BMC.‎ 因为DM⊂平面AMD,‎ 所以平面AMD⊥平面BMC.‎ ‎(2)当P为AM的中点时,MC∥平面PBD.‎ 证明如下:‎ 连接AC交BD于O.‎ 因为四边形ABCD为矩形,‎ 所以O为AC的中点.连接OP,‎ 因为P为AM中点,所以MC∥OP.‎ 又MC⊄平面PBD,OP⊂平面PBD,‎ 所以MC∥平面PBD.‎ ‎3.(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.‎ 求证:(1)EF∥平面ABC;‎ ‎(2)AD⊥AC.‎ 证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,‎ 所以EF∥AB.‎ 又因为EF⊄平面ABC,AB⊂平面ABC,‎ 所以EF∥平面ABC.‎ ‎(2)因为平面ABD⊥平面BCD,‎ 平面ABD∩平面BCD=BD,‎ BC⊂平面BCD,BC⊥BD,‎ 所以BC⊥平面ABD.‎ 因为AD⊂平面ABD,‎ 所以BC⊥AD.‎ 又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,‎ 所以AD⊥平面ABC.‎ 又因为AC⊂平面ABC,‎ 所以AD⊥AC.‎ ‎4.(2016·江苏高考)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.‎ 求证:(1)直线DE∥平面A1C1F;‎ ‎(2)平面B1DE⊥平面A1C1F.‎ 证明:(1)在直三棱柱ABCA1B1C1中,A1C1∥AC.‎ 在△ABC中,因为D,E分别为AB,BC的中点,‎ 所以DE∥AC,于是DE∥A1C1.‎ 又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,‎ 所以直线DE∥平面A1C1F.‎ ‎(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.‎ 因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.‎ 又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,‎ 所以A1C1⊥平面ABB1A1.‎ 因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.‎ 又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,‎ 所以B1D⊥平面A1C1F.‎ 因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.‎
查看更多

相关文章

您可能关注的文档