- 2021-05-25 发布 |
- 37.5 KB |
- 44页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学理科高考真题模拟新题分类汇编B单元函数与导数
数学 B单元 函数与导数 B1 函数及其表示 6.[2014·安徽卷] 设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f=( ) A.B. C.0D.- 6.A[解析]由已知可得,f=f+sin=f+sin+sin=f+sin+sin+sin=2sin+sin=sin=. 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=B.y=(x-1)2 C.y=2-xD.y=log0.5(x+1) 2.A[解析]由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A. 7.、、[2014·福建卷] 已知函数f(x)=则下列结论正确的是( ) A.f(x)是偶函数 B.f(x)是增函数 C.f(x)是周期函数 D.f(x)的值域为[-1,+∞) 7.D[解析]由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos1,f(1)≠f(-1),则f(x)不是偶函数; 当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1; 当x≤0时,f(x)=cosx,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1]; ∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞). 2.[2014·江西卷] 函数f(x)=ln(x2-x)的定义域为( ) A.(0,1] B.[0,1] C.(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 2.C[解析]由x2-x>0,得x>1或x<0. 3.,[2014·山东卷] 函数f(x)=的定义域为( ) A.B.(2,+∞) C.∪(2,+∞) D.∪[2,+∞) 3.C[解析]根据题意得,解得故选C. B2 反函数 12.[2014·全国卷] 函数y=f(x)的图像与函数y=g(x)的图像关于直线x+y=0对称,则y=f(x)的反函数是( ) A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x) 12.D[解析]设(x0,y0)为函数y=f(x)的图像上任意一点,其关于直线x+y=0的对称点为(-y0,-x0).根据题意,点(-y0,-x0)在函数y=g(x)的图像上,又点(x0,y0)关于直线y=x的对称点为(y0,x0),且(y0,x0)与(-y0,-x0)关于原点对称,所以函数y=f(x)的反函数的图像与函数y=g(x)的图像关于原点对称,所以-y=g(-x),即y=-g(-x). B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=B.y=(x-1)2 C.y=2-xD.y=log0.5(x+1) 2.A[解析]由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A. 7.、、[2014·福建卷] 已知函数f(x)=则下列结论正确的是( ) A.f(x)是偶函数 B.f(x)是增函数 C.f(x)是周期函数 D.f(x)的值域为[-1,+∞) 7.D[解析]由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos1,f(1)≠f(-1),则f(x)不是偶函数; 当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1; 当x≤0时,f(x)=cosx,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1]; ∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞). 21.、[2014·广东卷] 设函数f(x)=,其中k<-2. (1)求函数f(x)的定义域D(用区间表示); (2)讨论函数f(x)在D上的单调性; (3)若k<-6,求D上满足条件f(x)>f(1)的x的集合(用区间表示). 12.[2014·四川卷] 设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________. 12.1[解析]由题意可知,f=f=f=-4+2=1. 15.,[2014·四川卷] 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”; ②函数f(x)∈B的充要条件是f(x)有最大值和最小值; ③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B; ④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B. 其中的真命题有________.(写出所有真命题的序号) 15.①③④[解析]若f(x)∈A,则f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确. 取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得f(x)的值域包含于[-M,M]=[-1,1],但此时f(x)没有最大值和最小值,故②错误. 当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(a0)=b-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确. 对于f(x)=aln(x+2)+(x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)=(x>-2). 易知f(x)∈,所以存在正数M=,使得f(x)∈[-M,M],故④正确. 21.,[2014·四川卷] 已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围. 21.解:(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b. 所以g′(x)=ex-2a. 当x∈[0,1]时,g′(x)∈[1-2a,e-2a]. 当a≤时,g′(x)≥0,所以g(x)在[0,1]上单调递增, 因此g(x)在[0,1]上的最小值是g(0)=1-b; 当a≥时,g′(x)≤0,所以g(x)在[0,1]上单调递减, 因此g(x)在[0,1]上的最小值是g(1)=e-2a-b; 当0,g(1)=e-2a-b>0. 由f(1)=0得a+b=e-1<2, 则g(0)=a-e+2>0,g(1)=1-a>0, 解得e-20,g(1)=1-a>0. 故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2. 由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增. 所以f(x1)>f(0)=0,f(x2)查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档