- 2021-05-25 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版几何证明选讲单元测试-doc
1.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E. (1)若D为AC的中点,证明:DE是⊙O的切线; (2)若OA=CE,求∠ACB的大小. 解:(1)证明:如图,连接AE,由已知得AE⊥BC, AC⊥AB. 在Rt△AEC中,由已知得DE=DC,故∠DEC=∠DCE. 连接OE,则∠OBE=∠OEB. 又∠ACB+∠ABC=90°, 所以∠DEC+∠OEB=90°, 故∠OED=90°,即DE是⊙O的切线. (2)设CE=1,AE=x. 由已知得AB=2,BE=. 由射影定理可得AE2=CE·BE, 即x2=,即x4+x2-12=0. 解得x=,所以∠ACB=60°. 2.如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点. (1)证明:EF∥BC; (2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积. 解:(1)证明:由于△ABC是等腰三角形,AD⊥BC, 所以AD是∠CAB的平分线. 又因为⊙O分别与AB,AC相切于点E,F, 所以AE=AF, 故AD⊥EF.从而EF∥BC. (2)由(1)知,AE=AF,AD⊥EF, 故AD是EF的垂直平分线. 又EF为⊙O的弦,所以O在AD上. 连接OE,OM,则OE⊥AE. 由AG等于⊙O的半径得AO=2OE,所以∠OAE=30°. 因此△ABC和△AEF都是等边三角形. 因为AE=2,所以AO=4,OE=2. 因为OM=OE=2,DM=MN=,所以OD=1. 于是AD=5,AB=. 所以四边形EBCF的面积为××-×(2)2×=. 3. 如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE. (1)证明:∠D=∠E; (2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形. 证明:(1)由题设知A,B,C,D四点共圆, 所以∠D=∠CBE. 由已知CB=CE得∠CBE=∠E,故∠D=∠E. (2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上. 又AD不是⊙O的直径,M为AD的中点, 故OM⊥AD,即MN⊥AD. 所以AD∥BC,故∠A=∠CBE. 又∠CBE=∠E,故∠A=∠E. 由(1)知,∠D=∠E,所以△ADE为等边三角形. 4. 如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明: (1)BE=EC; (2)AD·DE=2PB2. 证明:(1)连接AB,AC. 由题设知PA=PD, 故∠PAD=∠PDA. 因为∠PDA=∠DAC+∠DCA, ∠PAD=∠BAD+∠PAB,∠DCA=∠PAB, 所以∠DAC=∠BAD,从而=. 因此BE=EC. (2)由切割线定理得PA2=PB·PC. 因为PA=PD=DC,所以DC=2PB,BD=PB. 由相交弦定理得AD·DE=BD·DC, 所以AD·DE=2PB2. 5. 如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D. (1)证明:DB=DC; (2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径. 解:(1)证明:连接DE,交BC于点G. 由 弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE. 又DB⊥BE,所以DE为直径,则∠DCE=90°, 由勾股定理可得DB=DC. (2)由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=. 设DE的中点为O,连接BO,则∠BOG=60°. 从而∠ABE=∠BCE=∠CBE=30°, 所以CF⊥BF,故Rt△BCF外接圆的半径等于. 6. 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证明:CA是△ABC外接圆的直径; (2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值. 解:(1)证明:因为CD为△ABC外接圆的切线,所以∠DCB=∠A,由题设知=, 故△CDB∽△AEF, 所以∠DBC=∠EFA,所以∠CBA=∠CFE. 因为B,E,F,C四点共圆,所以∠CBA+∠CFE=180°, 所以∠CBA= 90°,因此CA是△ABC外接圆的直径. (2)连接CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE.由BD=BE,有CE=DC,又BC2=DB·BA=2DB2, 所以CA2=4DB2+BC2=6DB2. 而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为. 7. 如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD. 证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC. 又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连接AF,所以四边形ADCF是平行四边形,故CD=AF. 因为CF∥AB,所以BC=AF,故CD=BC. (2)因为FG∥BC,故GB=CF. 由(1)可知BD=CF,所以GB=BD. 而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.查看更多