- 2021-05-25 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018届二轮复习线性规划课件(全国通用)
线性规划 高考体验 1.( 2014 · 全国 Ⅱ 卷 , 文 9 ) 设 x,y 满足约束条件 则 z=x+2y 的最大值为 ( ) (A)8 (B)7 (C)2 (D)1 B B A 答案 : (-∞,8] 5.( 2016 · 全国 Ⅱ 卷 , 文 14 ) 若 x,y 满足约束条件 则 z=x-2y 的最小值为 . 解析 : 由线性约束条件得可行域如图 . 则 z=x-2y 在 B(3,4) 处取得最小值为 3-2×4=-5. 答案 : -5 6.( 2016 · 全国 Ⅰ 卷 , 文 16 ) 某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料 . 生产一件产品 A 需要甲材料 1.5 kg, 乙材料 1 kg, 用 5 个工时 ; 生产一件产品 B 需要甲材料 0.5 kg, 乙材料 0.3 kg, 用 3 个工时 , 生产一件产品 A 的利润为 2 100 元 , 生产一件产品 B 的利润为 900 元 . 该企业现有甲材料 150 kg, 乙材料 90 kg, 则在不超过 600 个工时的条件下 , 生产产品 A, 产品 B 的利润之和的最大值为 元 . 答案 : 216 000 高考感悟 1. 考查角度 (1) 求目标函数的最值 ( 或范围 ). (2) 已知目标函数值求参数 ( 或范围 ). (3) 线性规划的实际应用 . (4) 不等式的解法及基本不等式求最值 ( 与其他知识相结合 ). 2. 题型及难易度 选择题、填空题 . 难度中档偏下 . 热点突破 剖典例 · 促迁移 不等式的解法 热点一 答案 : (1)A 【 方法技巧 】 解不等式的常见策略 (1) 解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式 ( 一般为一元二次不等式 ) 求解 . (2) 解决含参数不等式的难点在于对参数的恰当分类 , 关键是找到对参数进行讨论的原因 , 确定好分类标准 , 有理有据、层次清楚地求解 . 热点训练 1:( 2015 · 广东卷 , 文 11 ) 不等式 -x 2 -3x+4>0 的解集为 .( 用区间表示 ) 解析 : -x 2 -3x+4>0 ⇒ (x+4)(x-1)<0 ⇒ -4查看更多