- 2021-05-22 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考全国卷1理科数学解析版资料
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4. 考试结束后,将本试题和答题卡一并交回。 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 设复数z满足=i,则|z|= (A)1 (B) (C) (D)2 【答案】A 考点:1.复数的运算;2.复数的模. (2)sin20°cos10°-con160°sin10°= (A) (B) (C) (D) 【答案】D 【解析】 试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=,故选D. 考点:诱导公式;两角和与差的正余弦公式 (3)设命题P:nN,>,则P为 (A)nN, > (B) nN, ≤ (C)nN, ≤ (D) nN, = 【答案】C 【解析】 试题分析::,故选C. 考点:特称命题的否定 (4)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A)0.648 (B)0.432 (C)0.36 (D)0.312 【答案】A 【解析】 试题分析:根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式 (5)已知M(x0,y0)是双曲线C:上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是 (A)(-,) (B)(-,) (C)(,) (D)(,) 【答案】A 考点:向量数量积;双曲线的标准方程 (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 【答案】B 考点:圆锥的体积公式 (7)设D为ABC所在平面内一点,则( ) (A) (B) (C) (D) 【答案】A 【解析】 试题分析:由题知=,故选A. 考点:平面向量运算 (8) 函数=的部分图像如图所示,则的单调递减区间为 (A)(),k (b)(),k (C)(),k (D)(),k 【答案】D 【解析】 试题分析:由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D. 考点:三角函数图像与性质 (9)执行右面的程序框图,如果输入的t=0.01,则输出的n= (A)5 (B)6 (C)7 (D)8 【答案】C 【解析】 试题分析:执行第1次,t=0.01,S=1,n=0,m==0.5,S=S-m=0.5,=0.25,n=1,S=0.5>t=0.01,是,循环, 执行第2次,S=S-m=0.25,=0.125,n=2,S=0.25>t=0.01,是,循环, 执行第3次,S=S-m=0.125,=0.0625,n=3,S=0.125>t=0.01,是,循环, 执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625>t=0.01,是,循环, 执行第5次,S=S-m=0.03125,=0.015625,n=5,S=0.03125>t=0.01,是,循环, 执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625>t=0.01,是,循环, 执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C. 考点:程序框图 (10) 的展开式中,的系数为 (A)10 (B)20 (C)30(D)60 【答案】C 【解析】 试题分析:在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 C. 考点:排列组合;二项式定理 (11) 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20,则r= (A)1(B)2(C)4(D)8 【答案】B 考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式 12. 设函数=,其中a1,若存在唯一的整数x0,使得0,则的取值范围是( ) A.[-,1) B. [-,) C. [,) D. [,1) 【答案】D 【解析】 试题分析:设=,,由题知存在唯一的整数,使得在直线的下方. 因为,所以当时,<0,当时,>0,所以当时,=, 当时,=-1,,直线恒过(1,0)斜率且,故,且,解得≤<1,故选D. 考点:导数的综合应用 第II卷 本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。 二、填空题:本大题共3小题,每小题5分 (13)若函数f(x)=xln(x+)为偶函数,则a= 【答案】1 考点:函数的奇偶性 (14)一个圆经过椭圆 的三个顶点,且圆心在x轴上,则该圆的标准方程为 。 【答案】 【解析】 试题分析:设圆心为(,0),则半径为,则,解得,故圆的方程为. 考点:椭圆的几何性质;圆的标准方程 (15)若x,y满足约束条件,则的最大值为 . 【答案】3 【解析】 试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3. 考点:线性规划解法 (16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 【答案】(,) 【解析】 试题分析:如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,∠B=∠BFC=75°,∠FCB=30 °,由正弦定理知,,即,解得BF=,所以AB的取值范围为(,). 考点:正余弦定理;数形结合思想 三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分) 为数列{}的前n项和.已知>0,=. (Ⅰ)求{}的通项公式: (Ⅱ)设 ,求数列}的前n项和 【答案】(Ⅰ)(Ⅱ) 【解析】 试题分析:(Ⅰ)先用数列第n项与前n项和的关系求出数列{}的递推公式,可以判断数列{}是等差数列,利用等差数列的通项公式即可写出数列{}的通项公式;(Ⅱ)根据(Ⅰ)数列{}的通项公式,再用拆项消去法求其前n项和. 试题解析:(Ⅰ)当时,,因为,所以=3, 当时,==,即,因为,所以=2, 所以数列{}是首项为3,公差为2的等差数列, 所以=; (Ⅱ)由(Ⅰ)知,=, 所以数列{}前n项和为= =. 考点:数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法 (18)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。 (1)证明:平面AEC⊥平面AFC (2)求直线AE与直线CF所成角的余弦值 【答案】(Ⅰ)见解析(Ⅱ) ∴,∴EG⊥FG, ∵AC∩FG=G,∴EG⊥平面AFC, ∵EG面AEC,∴平面AFC⊥平面AEC. ……6分 (Ⅱ)如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-,0),E(1,0, ),F(-1,0,),C(0,,0),∴=(1,,),=(-1,-,).…10分 故. 所以直线AE与CF所成的角的余弦值为. ……12分 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 (19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。 46.6 56.3 6.8 289.8 1.6 1469 108.8 表中w1 =1, , = (Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程; (Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为: , 【答案】(Ⅰ)适合作为年销售关于年宣传费用的回归方程类型(Ⅱ)(Ⅲ)46.24 ∴关于的回归方程为.……6分 考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识 (20)(本小题满分12分) 在直角坐标系xoy中,曲线C:y=与直线(>0)交与M,N两点, (Ⅰ)当k=0时,分别求C在点M和N处的切线方程; (Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由。 【答案】(Ⅰ)或(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标. 试题解析:(Ⅰ)由题设可得,,或,. ∵,故在=处的到数值为,C在处的切线方程为 ,即. 故在=-处的到数值为-,C在处的切线方程为 ,即. 故所求切线方程为或. ……5分 (Ⅱ)存在符合题意的点,证明如下: 设P(0,b)为复合题意得点,,,直线PM,PN的斜率分别为. 将代入C得方程整理得. ∴. ∴==. 当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补, 故∠OPM=∠OPN,所以符合题意. ……12分 考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 (21)(本小题满分12分) 已知函数f(x)= (Ⅰ)当a为何值时,x轴为曲线 的切线; (Ⅱ)用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数 【答案】(Ⅰ);(Ⅱ)当或时,由一个零点;当或时,有两个零点;当时,有三个零点. 【解析】 试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的值;(Ⅱ)根据对数函数的图像与性质将分为研究的零点个数,若零点不容易求解,则对再分类讨论. 试题解析:(Ⅰ)设曲线与轴相切于点,则,,即,解得. 因此,当时,轴是曲线的切线. ……5分 (Ⅱ)当时,,从而, ∴在(1,+∞)无零点. 当=1时,若,则,,故=1是的零点;若,则,,故=1不是的零点. 当时,,所以只需考虑在(0,1)的零点个数. (ⅰ)若或,则在(0,1)无零点,故在(0,1)单调,而,,所以当时,在(0,1)有一个零点;当0时,在(0,1)无零点. (ⅱ)若,则在(0,)单调递减,在(,1)单调递增,故当=时,取的最小值,最小值为=. ① 若>0,即<<0,在(0,1)无零点. ② 若=0,即,则在(0,1)有唯一零点; ③ 若<0,即,由于,,所以当时,在(0,1)有两个零点;当时,在(0,1)有一个零点.…10分 综上,当或时,由一个零点;当或时,有两个零点;当时,有三个零点. ……12分 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想 请考生在(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑。 (22)(本题满分10分)选修4-1:几何证明选讲 如图,AB是O的直径,AC是O的切线,BC交O于E (I) 若D为AC的中点,证明:DE是O的切线; (Ⅱ)若,求∠ACB的大小. 【答案】(Ⅰ)见解析(Ⅱ)60° 考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 (23)(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,直线:=2,圆: ,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系。 (I) 求,的极坐标方程; (II) 若直线的极坐标方程为,设与的交点为, ,求的面积 【答案】(Ⅰ),(Ⅱ) 【解析】 试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得,的极坐标方程;(Ⅱ)将将代入即可求出|MN|,利用三角形面积公式即可求出的面积. 试题解析:(Ⅰ)因为, ∴的极坐标方程为,的极坐标方程为.……5分 (Ⅱ)将代入,得,解得=,=,|MN|=-=, 因为的半径为1,则的面积=. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 (24)(本小题满分10分)选修4—5:不等式选讲 已知函数=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集; (Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围 【答案】(Ⅰ)(Ⅱ)(2,+∞) 【解析】 试题分析:(Ⅰ)利用零点分析法将不等式f(x)>1化为一元一次不等式组来解;(Ⅱ)将化为分段函数,求出与 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于的不等式,即可解出的取值范围. 考点:含绝对值不等式解法;分段函数;一元二次不等式解法查看更多