- 2021-05-22 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学第一章解三角形1-1正弦定理和余弦定理第3课时正余弦定理的综合应用达标检测含解析新人教A版必修5
正、余弦定理的综合应用 A级 基础巩固 一、选择题 1.已知三角形的三边长分别是a,b,,则此三角形中最大的角是( ) A.30° B.60° C.120° D.150° 解析:因为>a, >b, 所以最大边是, 设其所对的角为θ,则 cos θ==-, 所以θ=120°. 答案:C 2.△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a=1,b=,则c=( ) A.2 B.2 C. D.1 解析:由=,得=, 所以=, 故cos A=, 因为A∈(0,π),所以A=, 所以B=,C=,c===2. 答案:B 3.已知△ABC的三边长分别为AB=7,BC=5,AC=6.则·的值为( ) A.19 B.14 C.-18 D.-19 解析:由余弦定理的推论知: cos B==. 所以·=||·||·cos(π-B)=7×5×=-19. 答案:D - 5 - 4.锐角三角形ABC中,sin A和cos B的大小关系是( ) A.sin A=cos B B.sin A<cos B C.sin A>cos B D.不能确定 解析:在锐角三角形ABC中,A+B>90°. 所以A>90°-B, 所以sin A>sin (90°-B)=cos B. 答案:C 5.在△ABC中,b=8,c=3,A=60°,则此三角形外接圆面积为( ) A. B. C. D. 解析:a2=b2+c2-2bccos A=82+32-2×8×3×=49, 所以a=7,所以2R===, 所以R=,所以S=π=π. 答案:D 二、填空题 6.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知bsin A+acos B=0,则B=________. 答案: 7.在△ABC中,AB=,D为BC的中点,AD=1,∠BAD=30°,则△ABC的面积S△ABC=________. 解析:因为AB=,AD=1,∠BAD=30°, 所以S△ABD=··1·sin 30°=, 又D是BC边中点, 所以S△ABC=2SABD=. 答案: 8.(2018·浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=________,c=________. 解析:本小题考查正弦定理、余弦定理. - 5 - 由=得sin B=sin A=, 由a2=b2+c2-2bccos A,得c2-2c-3=0, 解得c=3(舍负). 答案: 3 三、解答题 9.已知△ABC中,角A,B,C的对边分别为a,b,c,2cos C·(acos C+ccos A)+b=0. (1)求角C的大小; (2)若b=2,c=2,求△ABC的面积. 解:(1)由正弦定理可得2cos C(sin Acos C+sin Ccos A)+sin B=0, 所以2cos Csin(A+C)+sin B=0,即2cos Csin B+sin B=0, 又00,所以a=2. 所以S△ABC=absin C=,所以△ABC的面积为. 10.在△ABC中,a,b,c分别为角A,B,C的对边,4sin2-cos 2A=. (1)求A的度数; (2)若a=,b+c=3,求b和c的值. 解:(1)由4sin2-cos 2A=及A+B+C=180°, 得2[1-cos(B+C)]-2cos2A+1=⇒4(1+cos A)-4cos2 A=5, 即4cos2 A-4cos A+1=0, 所以(2cos A-1)2=0,解得cos A=. 因为0°<A<180°,所以A=60°. (2)由余弦定理,得cos A=. 因为cos A=,所以=, 化简并整理,得(b+c)2-a2=3bc, 将a=,b+c=3代入上式,得bc=2. 则由解得或 - 5 - B级 能力提升 1.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知asin A-bsin B=4csin C,cos A=-,则=( ) A.6 B.5 C.4 D.3 答案:A 2.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是________. 解析:如图所示,延长BA,CD交于点E,则可知在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,所以设AD=x,AE=x,DE=x,CD=m,因为BC=2, 所以·sin 15°=1⇒x+m=+,所以0<x<4,而AB=x+m-x=x+m= +-x,所以AB的取值范围是(-,+). 答案:(-,+) 3.(2016·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长. 解:(1)由已知及正弦定理得: 2cos C(sin Acos B+sin Bcos A)=sin C, 即2cos Csin(A+B)=sin C. 故2sin Ccos C=sin C. 可得cos C=,所以C=. (2)由已知,absin C=. - 5 - 又C=,所以ab=6. 由已知及余弦定理得,a2+b2-2abcos C=7. 故a2+b2=13,从而=25. 所以△ABC的周长为5+. - 5 -查看更多