中考数学压轴题四边形的存在性

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学压轴题四边形的存在性

中考数学压轴题四边形的存在性 ‎1、综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q ‎(1)求点A,B,C的坐标。‎ ‎(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。‎ ‎(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。‎ ‎2、(2013年临沂压轴题)如图,抛物线经过三点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;‎ ‎(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.‎ x y A O C B ‎(第26题图)‎ ‎ ‎ ‎3、(2013菏泽压轴题)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.‎ ‎(1)试求b,c的值,并写出该二次函数表达式;‎ ‎(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?‎ ‎②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?‎ ‎4、(2013•常德)如图,已知二次函数的图象过点A(0,﹣3),B(,),对称轴为直线x=﹣,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.‎ ‎(1)求此二次函数的解析式;‎ ‎(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;‎ ‎(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.‎ ‎5、(2013•钦州压轴题)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.‎ ‎(1)求点A的坐标和∠AOB的度数;‎ ‎(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;‎ ‎(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;‎ ‎(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.‎ ‎6、(2013安顺压轴题)如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).‎ ‎(1)求抛物线的解析式;‎ ‎(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;‎ ‎(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.‎ ‎7、(2012湖北孝感)如图,抛物线(a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).‎ ‎(1)求抛物线的解析式及顶点D的坐标.‎ ‎(2)P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时点P的坐标.‎ ‎(3)点Q是抛物线在第一象限上的一个动点,过点Q作QN∥AC交x轴于点N.当点Q的坐标为_________时,四边形QNAC是平行四边形;当点Q的坐标为_________时,四边形QNAC是等腰梯形.‎ ‎8、如图,OA,OB的长分别是关于的方程x2-12x+32=0的两根,且OA>OB.请解答下列问题:‎ ‎(1)求直线AB的解析式. ‎ ‎(2)若P为AB上一点,且,求过点P的反比例函数的解析式.‎ ‎(3)在坐标平面内是否存在点Q,使得以A,P,O,Q为顶点的四边形是等腰梯形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.‎ ‎9、(2012湖北襄阳)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.‎ ‎(1)求AD的长及抛物线的解析式.‎ ‎(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?‎ ‎(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标;若不存在,请说明理由.‎ ‎10、(2010贵州遵义)如图,已知抛物线(a ≠ 0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与点A不重合),过点P作PD∥y轴,交AC于点D.‎ ‎(1)求该抛物线的函数关系式.‎ ‎(2)当△ADP是直角三角形时,求点P的坐标.‎ ‎(3)在(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.‎ ‎11、(2011•襄阳)如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=,抛物线y=ax2+bx+c过A,B,C三点.‎ ‎(1)求证:∠CAD=∠CAB;‎ ‎(2)①求抛物线的解析式;‎ ‎②判断抛物线的顶点E是否在直线CD上,并说明理由;‎ ‎(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.‎ ‎12、(2011•湛江)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).‎ ‎(1)求抛物线的解析式;‎ ‎(2)连接AC,CD,AD,试证明△ACD为直角三角形;‎ ‎(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.‎ ‎13、如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴与轴相交于点M.‎ ‎(1)求抛物线的解析式和对称轴; ‎ ‎(2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; ‎ ‎(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由. ‎ ‎14、(2011广东省9分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥轴,垂足为点C(3,0).‎ ‎(1)求直线AB的函数关系式;‎ ‎(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;‎ ‎(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.‎ ‎15、如图,已知抛物线与x 轴交于两点A、B,其顶点为C. ‎ ‎(1) 对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;‎ ‎(2)求证:△ABC是等腰直角三角形;‎ ‎(3)已知点D在轴上,那么在抛物线上是否存在点P,使得以B、‎ C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.‎
查看更多

相关文章

您可能关注的文档