- 2021-05-20 发布 |
- 37.5 KB |
- 16页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学试题分类汇编——概率与统计
2008年高考数学试题分类汇编 概率与统计 一. 选择题: 1.(安徽卷10).设两个正态分布和的密度函数图像如图所示。则有( A ) A. B. C. D. 2.(山东卷7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为B (A) (B) (C) (D) 3.(山东卷8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 (A)304.6 (B)303.6 (C)302.6 (D)301.6 4.(江西卷11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为C A. B. C. D. 5.(湖南卷4)设随机变量服从正态分布,若,则c= ( B ) A.1 B.2 C.3 D.4 6.(重庆卷5)已知随机变量服从正态分布N(3,a2),则P(=D (A) (B) (C) (D) 7.(福建卷5)某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是B A. B. C. D. 8.(广东卷2)记等差数列的前项和为,若,,则( D ) A.16 B.24 C.36 D.48 9.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A. B. C. D. 一. 填空题: 1.(天津卷11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.10 2.(上海卷7)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示) 3.(上海卷9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是 10.5和10.5; 4.(江苏卷2)一个骰子连续投2 次,点数和为4 的概率 . 5.(江苏卷6)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 . 6.(湖南卷15)对有n(n≥4)个元素的总体进行抽样,先将总体分成两个子总体和 (m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用表示元素i和j同时出现在样本中的概率,则= ; 所有 (1≤i<j≤的和等于 . ,6 一. 解答题: 1.(全国一20).(本小题满分12分) (注意:在试题卷上作答无效) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)表示依方案乙所需化验次数,求的期望. 解:(Ⅰ)对于甲: 次数 1 2 3 4 5 概率 0.2 0.2 0.2 0.2 0.2 对于乙: 次数 2 3 4 概率 0.4 0.4 0.2 . (Ⅱ)表示依方案乙所需化验次数,的期望为. 2.(全国二18).(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为. (Ⅰ)求一投保人在一年度内出险的概率; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 解: 各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为, 则. (Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当, 2分 , 又, 故. 5分 (Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和. 支出 , 盈利 , 盈利的期望为 , 9分 由知,, . (元). 故每位投保人应交纳的最低保费为15元. 12分 3.(北京卷17).(本小题共13分) 甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列. 解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么, 即甲、乙两人同时参加岗位服务的概率是. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么, 所以,甲、乙两人不在同一岗位服务的概率是. (Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务, 则. 所以,的分布列是 1 3 4.(四川卷18).(本小题满分12分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。 【解】:记表示事件:进入商场的1位顾客购买甲种商品, 记表示事件:进入商场的1位顾客购买乙种商品, 记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种, 记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种, (Ⅰ) (Ⅱ) (Ⅲ),故的分布列 所以 5.(天津卷18)(本小题满分12分) 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率; (Ⅱ)求甲投球2次,至少命中1次的概率; (Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 解:本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解法一:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B. 由题意得 解得或(舍去),所以乙投球的命中率为. 解法二:设设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B. 由题意得,于是或(舍去),故. 所以乙投球的命中率为. (Ⅱ)解法一:由题设和(Ⅰ)知. 故甲投球2次至少命中1次的概率为 解法二: 由题设和(Ⅰ)知 故甲投球2次至少命中1次的概率为 (Ⅲ)由题设和(Ⅰ)知, 甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。概率分别为 , , 所以甲、乙两人各投两次,共命中2次的概率为. 6.(安徽卷19).(本小题满分12分) 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。 (Ⅰ)求n,p的值并写出的分布列; (Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 解:(1)由得, 从而 的分布列为 0 1 2 3 4 5 6 (2)记”需要补种沙柳”为事件A, 则 得 或 7.(山东卷18)(本小题满分12分) 甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分. (Ⅰ)求随机变量ε分布列和数学期望; (Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB). (Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且 所以ε的分布列为 ε 0 1 2 3 P ε的数学期望为 Eε= 解法二:根据题设可知 因此ε的分布列为 (Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又 由互斥事件的概率公式得 解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k =0,1,2,3由于事件A3B0,A2B1为互斥事件,故事 P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1). = 8.(江西卷18).(本小题满分12分) 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令表示方案实施两年后柑桔产量达到灾前产量的倍数. (1).写出的分布列; (2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大? (3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大? 解:(1)的所有取值为 的所有取值为, 、的分布列分别为: 0.8 0.9 1.0 1.125 1.25 P 0.2 0.15 0.35 0.15 0.15 0.8 0.96 1.0 1.2 1.44 P 0.3 0.2 0.18 0.24 0.08 (2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件, , 可见,方案二两年后柑桔产量超过灾前产量的概率更大 (3)令表示方案所带来的效益,则 10 15 20 P 0.35 0.35 0.3 10 15 20 P 0.5 0.18 0.32 所以 可见,方案一所带来的平均效益更大。 9.(湖北卷17).(本小题满分12分) 袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(=1,2,3,4).现从袋中任取一球.表示所取球的标号. (Ⅰ)求的分布列,期望和方差; (Ⅱ)若, ,,试求a,b的值. 解:本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分) 解:(Ⅰ)的分布列为: 0 1 2 3 4 P ∴ (Ⅱ)由,得a2×2.75=11,即又所以 当a=2时,由1=2×1.5+b,得b=-2; 当a=-2时,由1=-2×1.5+b,得b=4. ∴或即为所求. 10.(湖南卷16).(本小题满分12分) 甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试 合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数的分布列和数学期望. 解: 用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立, 且P(A)=P(B)=P(C)=. (Ⅰ)至少有1人面试合格的概率是 (Ⅱ)的可能取值为0,1,2,3. = = = = 所以, 的分布列是 0 1 2 3 P 的期望 11.(陕西卷18).(本小题满分12分) 某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响. (Ⅰ)求该射手恰好射击两次的概率; (Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望. 解:(Ⅰ)设该射手第次击中目标的事件为,则, . (Ⅱ)可能取的值为0,1,2,3. 的分布列为 0 1 2 3 0.008 0.032 0.16 0.8 . 12.(重庆卷18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求: (Ⅰ) 打满3局比赛还未停止的概率; (Ⅱ)比赛停止时已打局数的分别列与期望E. 解:令分别表示甲、乙、丙在第k局中获胜. (Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比 赛还未停止的概率为 (Ⅱ)的所有可能值为2,3,4,5,6,且 故有分布列 2 3 4 5 6 P 从而(局). 13.(福建卷20)(本小题满分12分) 某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科 目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证 书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试 成绩合格的概率均为.假设各次考试成绩合格与否均互不影响. (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E. 本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分. 解:设“科目A第一次考试合格”为事件A,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B,“科目B补考合格”为事件B. (Ⅰ)不需要补考就获得证书的事件为A1·B1,注意到A1与B1相互独立, 则. 答:该考生不需要补考就获得证书的概率为. (Ⅱ)由已知得,=2,3,4,注意到各事件之间的独立性与互斥性,可得 故 答:该考生参加考试次数的数学期望为. 14.(广东卷17).(本小题满分13分) 随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为. (1)求的分布列;(2)求1件产品的平均利润(即的数学期望); (3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? 【解析】的所有可能取值有6,2,1,-2;, , 故的分布列为: 6 2 1 -2 0.63 0.25 0.1 0.02 (2) (3)设技术革新后的三等品率为,则此时1件产品的平均利润为 依题意,,即,解得 所以三等品率最多为 15.(浙江卷19)(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。 (Ⅰ)若袋中共有10个球, (i)求白球的个数; (ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。 (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。 本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球的个数为,则, 得到. 故白球有5个. (ii)随机变量的取值为0,1,2,3,分布列是 0 1 2 3 的数学期望 . (Ⅱ)证明:设袋中有个球,其中个黑球,由题意得, 所以,,故. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则 . 所以白球的个数比黑球多,白球个数多于,红球的个数少于. 故袋中红球个数最少. 16.(辽宁卷18).(本小题满分12分) 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示: 周销售量 2 3 4 频数 20 50 30 (Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望. 解:本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. 3分 (Ⅱ)的可能值为8,10,12,14,16,且 P(=8)=0.22=0.04, P(=10)=2×0.2×0.5=0.2, P(=12)=0.52+2×0.2×0.3=0.37, P(=14)=2×0.5×0.3=0.3, P(=16)=0.32=0.09. 的分布列为 8 10 12 14 16 P 0.04 0.2 0.37 0.3 0.09 9分 =8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) 12分查看更多