- 2021-05-20 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学人教a版选修1-1章末综合测评2word版含答案
章末综合测评(二) 圆锥曲线与方程 (时间 120分钟,满分 150分) 一、选择题(本大题共 12小题,每小题 5分,共 60分.在每小题 给出的四个选项中,只有一项是符合题目要求的) 1.抛物线 y=- 1 8 x2的准线方程是( ) A.x= 1 32 B.y=2 C.y= 1 32 D.y=-2 【解析】 将 y=- 1 8 x2化为标准形式为 x2=-8y,故准线方程为 y =2. 【答案】 B 2.(2015·安徽高考)下列双曲线中,渐近线方程为y=±2x的是( ) A.x2-y2 4 =1 B.x 2 4 -y2=1 C.x2-y2 2 =1 D.x 2 2 -y2=1 【解析】 法一 由渐近线方程为 y=±2x,可得 y 2 =±x,所以双曲 线的标准方程可以为 x2-y2 4 =1 或 y2 4 -x2=1,舍去 . 法二 A中的渐近线方程为 y=±2x;B中的渐近线方程为 y=±1 2 x; C中的渐近线方程为 y=± 2x;D中的渐近线方程为 y=± 2 2 x.故选 A. 【答案】 A 3.(2015·湖南高考)若双曲线 x2 a2 - y2 b2 =1的一条渐近线经过点(3,- 4),则此双曲线的离心率为( ) A. 7 3 B.5 4 C.4 3 D.5 3 【解析】 由双曲线的渐近线过点(3,-4)知b a = 4 3 , ∴ b2 a2 = 16 9 . 又 b2=c2-a2,∴ c2-a2 a2 = 16 9 , 即 e2-1=16 9 ,∴e2=25 9 ,∴e=5 3 . 【答案】 D 4.抛物线 y2=1 4 x关于直线 x-y=0 对称的抛物线的焦点坐标是 ( ) 【导学号:26160065】 A.(1,0) B. 0, 1 16 C.(0,1) D. 1 16 ,0 【解析】 ∵y2=1 4 x的焦点坐标为 1 16 ,0 , ∴关于直线 y=x对称后抛物线的焦点为 0, 1 16 . 【答案】 B 5.设 F1,F2是双曲线 x2 3 -y2=1的两个焦点,P在双曲线上,当 △F1PF2的面积为 2时,PF1→ ·PF2→ 的值为( ) A.2 B.3 C.4 D.6 【解析】 设 P(x0,y0),又 F1(-2,0),F2(2,0), ∴PF1→ =(-2-x0,-y0),PF2→ =(2-x0,-y0).|F1F2|=4. S△PF1F2=1 2 |F1F2|·|y0|=2, ∴|y0|=1.又x20 3 -y20=1, ∴x20=3(y20+1)=6,∴PF1→ ·PF2→ =x20+y20-4=6+1-4=3. 【答案】 B 6.(2016·泰安高二检测)有一个正三角形的两个顶点在抛物线 y2= 2px(p>0)上,另一个顶点在原点,则该三角形的边长是( ) A.2 3p B.4 3p C.6 3p D.8 3p 【解析】 设 A、B在 y2=2px上,另一个顶点为 O,则 A、B关 于 x轴对称,则∠AOx=30°,则 OA的方程为 y= 3 3 x.由 y= 3 3 x, y2=2px, 得 y=2 3p,∴△AOB的边长为 4 3p. 【答案】 B 7.已知|A B→|=3,A,B分别在 y轴和 x轴上运动,O为原点,OP→ = 1 3 OA→+ 2 3 OB→,则动点 P的轨迹方程是( ) A.x 2 4 +y2=1 B.x2+y2 4 =1 C.x 2 9 +y2=1 D.x2+y2 9 =1 【解析】 设 P(x,y),A(0,y0),B(x0,0),由已知得(x,y)=1 3 (0, y0)+2 3 (x0,0),即 x=2 3 x0,y=1 3 y0,所以 x0=3 2 x,y0=3y.因为|A B→|=3,所 以 x20+y20=9,即 3 2 x 2+(3y)2=9,化简整理得动点 P的轨迹方程是 x2 4 + y2=1. 【答案】 A 8.AB为过椭圆 x2 a2 + y2 b2 =1(a>b>0)的中心的弦 F1为一个焦点,则 △ABF1的最大面积是(c为半焦距)( ) A.ac B.ab C.bc D.b2 【解析】 △ABF1的面积为 c·|yA|,因此当|yA|最大, 即|yA|=b时,面积最大.故选 C. 【答案】 C 9.若 F1,F2是椭圆 x2 9 + y2 7 =1 的两个焦点,A为椭圆上一点,且 ∠AF1F2=45°,则△AF1F2的面积为( ) A.7 B.7 2 C.7 4 D.7 5 2 【解析】 |F1F2|=2 2,|AF1|+|AF2|=6, 则|AF2|=6-|AF1|, |AF2|2=|AF1|2+|F1F2|2-2|AF1|·|F1F2|cos 45° =|AF1|2-4|AF1|+8, 即(6-|AF1|)2=|AF1|2-4|AF1|+8, 解得|AF1|=7 2 , 所以 S=1 2 × 7 2 ×2 2× 2 2 = 7 2 . 【答案】 B 10.(2015·重庆高考)设双曲线 x2 a2 - y2 b2 =1(a>0,b>0)的右焦点是 F, 左、右顶点分别是 A1,A2,过 F作 A1A2的垂线与双曲线交于 B,C两 点.若 A1B⊥A2C,则该双曲线的渐近线的斜率为( ) A.±1 2 B.± 2 2 C.±1 D.± 2 【解析】 由题设易知 A1(-a,0),A2(a,0),B c,b2 a ,C c,- b2 a . ∵A1B⊥A2C, ∴ b2 a c+a · - b2 a c-a =-1,整理得 a=b. ∵渐近线方程为 y=±b a x,即 y=±x, ∴渐近线的斜率为±1. 【答案】 C 11.过抛物线 y2=4x的焦点 F的直线交该抛物线于 A,B两点,O 为坐标原点.若|AF|=3,则△AOB的面积是( ) A.3 2 B.2 2 C. 2 D.3 2 2 【解析】 如图所示,由题意知,抛物线的焦点 F的坐标为(1,0), 又|AF|=3,由抛物线定义知:点 A到准线 x=-1的距离为 3, ∴点 A的横坐标为 2. 将 x=2代入 y2=4x得 y2=8,由图知点 A的纵坐标 y=2 2, ∴A(2,2 2), ∴直线 AF的方程为 y=2 2(x-1). 联立直线与抛物线的方程 y=2 2x-1, y2=4x, 解之得 x=1 2 , y=- 2 或 x=2, y=2 2. 由图知 B 1 2 ,- 2 , ∴S△AOB= 1 2 |OF|·|yA-yB|=1 2 ×1×|2 2+ 2|=3 2 2. 【答案】 D 12.已知椭圆 C1: x2 a2 + y2 b2 =1(a>b>0)与双曲线 C2:x2-y2 4 =1有 公共的焦点,C2的一条渐近线与以 C1的长轴为直径的圆相交于 A,B 两点.若 C1恰好将线段 AB三等分,则( ) A.a2=13 2 B.a2=13 C.b2=1 2 D.b2=2 【解析】 由题意,知 a2=b2+5,因此椭圆方程为(a2-5)x2+a2y2 +5a2-a4=0,双曲线的一条渐近线方程为 y=2x,联立方程消去 y, 得(5a2-5)x2+5a2-a4=0,∴直线截椭圆的弦长 d= 5×2 a4-5a2 5a2-5 = 2 3 a,解得 a2=11 2 ,b2=1 2 ,故选 C. 【答案】 C 二、填空题(本大题共 4小题,每小题 5分,共 20分,将答案填在 题中的横线上) 13.(2015·北京高考)已知(2,0)是双曲线 x2-y2 b2 =1(b>0)的一个焦点, 则 b=________. 【解析】 由题意得,双曲线焦点在 x轴上,且 c=2.根据双曲线 的标准方程,可知 a2=1.又 c2=a2+b2,所以 b2=3.又 b>0,所以 b= 3. 【答案】 3 14.设 F1,F2为曲线 C1: x2 6 + y2 2 =1的焦点,P是曲线 C2: x2 3 -y2 =1与 C1的一个交点,则△PF1F2的面积为________. 【解析】 由题意知|F1F2|=2 6-2=4,设 P点坐标为(x,y). 由 x2 6 + y2 2 =1, x2 3 -y2=1, 得 x=±3 2 2 , y=± 2 2 . 则 S△PF1F2=1 2 |F1F2|·|y|=1 2 ×4× 2 2 = 2. 【答案】 2 15.如图 1,已知抛物线 y2=2px(p>0)的焦点恰好是椭圆 x2 a2 + y2 b2 =1 的右焦点 F,且两条曲线的交点连线也经过焦点 F,则该椭圆的离心率 为________. 图 1 【解析】 由条件知,c=p 2 , ∴其中一个交点坐标为(c,2c), ∴ c2 a2 + 4c2 b2 =1,∴e4-6e2+1=0, 解得 e2=3±2 2,∴e=±( 2±1). 又 0查看更多