- 2021-05-19 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教A高中数学必修三 两个变量的线性相关示范2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关
2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关 整体设计 教学分析 变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性. 三维目标 1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系. 2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系. 3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程. 重点难点 教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程. 教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想. 课时安排 2课时 教学过程 第1课时 导入新课 思路1 在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢? 请同学们如实填写下表(在空格中打“√” ): 好 中 差 你的数学成绩 你的物理成绩 学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验 看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题) 思路2 某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性? 推进新课 新知探究 提出问题 (1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗? (2)两个变量间的相关关系是什么?有几种? (3)两个变量间的相关关系的判断. 讨论结果: (1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等. 我们还可以举出现实生活中存在的许多相关关系的问题.例如: 商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关. 粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响. 人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关. 应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法. 在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断. (2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类: ①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等; ②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系. 如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关) (3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念. ①教学散点图 出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 年龄 23 27 38 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析. ②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图. 从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论. (a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系) ③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系) 应用示例 思路1 例1 下列关系中,带有随机性相关关系的是_____________. ①正方形的边长与面积之间的关系 ②水稻产量与施肥量之间的关系 ③人的身高与年龄之间的关系 ④降雪量与交通事故的发生率之间的关系 解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④. 答案:②④ 例2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗? 分析:学生思考,然后讨论交流,教师及时评价. 解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的. 点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题. 思路2 例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价: 品牌 所含热量的百分比 口味记录 A 25 89 B 34 89 C 20 80 D 19 78 E 26 75 F 20 71 G 19 65 H 24 62 I 19 60 J 13 52 (1)作出这些数据的散点图. (2)关于两个变量之间的关系,你能得出什么结论? 解:(1)散点图如下: (2)基本成正相关关系,即食品所含热量越高,口味越好. 例2 案例分析: 一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表. 性别 身高/cm 右手一拃长/cm 性别 身高/cm 右手一拃长/cm 女 152 18.5 女 153 16.0 女 156 16.0 女 157 20.0 女 158 17.3 女 159 20.0 女 160 15.0 女 160 16.0 女 160 17.5 女 160 17.5 女 160 19.0 女 160 19.0 女 160 19.0 女 160 19.5 女 161 16.1 女 161 18.0 女 162 18.2 女 162 18.5 女 163 20.0 女 163 21.5 女 164 17.0 女 164 18.5 女 164 19.0 女 164 20.0 女 165 15.0 女 165 16.0 女 165 17.5 女 165 19.5 女 166 19.0 女 167 19.0 女 167 19.0 女 168 16.0 女 168 19.0 女 168 19.5 女 170 21.0 女 170 21.0 女 170 21.0 女 171 19.0 女 171 20.0 女 171 21.5 女 172 18.5 女 173 18.0 女 173 22.0 男 162 19.0 男 164 19.0 男 165 21.0 男 168 18.0 男 168 19.0 男 169 17.0 男 169 20.0 男 170 20.0 男 170 21.0 男 170 21.5 男 170 22.0 男 171 21.5 男 171 21.5 男 171 22.3 男 172 21.5 男 172 23.0 男 173 20.0 男 173 20.0 男 173 20.0 男 173 20.0 男 173 21.0 男 174 22.0 男 174 22.0 男 175 16.0 男 175 20.0 男 175 21.0 男 175 21.2 男 175 22.0 男 176 16.0 男 176 19.0 男 176 20.0 男 176 22.0 男 176 22.0 男 177 21.0 男 178 21.0 男 178 21.0 男 178 22.5 男 178 24.0 男 179 21.5 男 179 21.5 男 179 23.0 男 180 22.5 男 181 21.1 男 181 21.5 男 181 23.0 男 182 18.5 男 182 21.5 男 182 24.0 男 183 21.2 男 185 25.0 男 186 22.0 男 191 21.0 男 191 23.0 (1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗? (2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系. (3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗? 解:根据上表中的数据,制成的散点图如下. 从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢? 同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线. 同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同. 同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距. 同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线. 同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多. 同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线. 同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线. 同学8:取一条直线,使得在它附近的点比较多. 在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的. 知能训练 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下: 零件数x(个) 10 20 30 40 50 60 70 80 90 100 加工时间y(min) 62 68 75 81 89 95 102 108 115 122 画出散点图; 关于加工零件的个数与加工时间,你能得出什么结论? 答案:(1)散点图如下: (2)加工零件的个数与所花费的时间呈正线性相关关系. 拓展提升 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据: 房屋面积(m2) 115 110 80 135 105 销售价格(万元) 24.8 21.6 18.4 29.2 22 (1)画出数据对应的散点图; (2)指出是正相关还是负相关; (3)关于销售价格y和房屋的面积x,你能得出什么结论? 解:(1)数据对应的散点图如下图所示: (2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关. (3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系. 作业 习题2.3A组3、4(1). 设计感想 本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.查看更多