- 2021-05-13 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师版高中数学必修一第5讲:函数的单调性(学生版)
1 函数的单调性 __________________________________________________________________________________ __________________________________________________________________________________ 1、 通过已学过的函数模型,特别是二次函数,理解函数的单调性; 2、 掌握单调性的判断方法,并能简单应用; 一、函数单调性的定义 1、图形描述: 对于函数 )(xf 的定义域 I 内某个区间 D 上,若其图像为从左到右的一条上升的曲线,我们就说 函数 )(xf 在区间 D 上为单调递增函数;若其图像为从左到右的一条下降的曲线,我们就说函数 )(xf 在区间 D 上为单调递减函数。 2、定量描述 对于函数 )(xf 的定义域 I 内某个区间 D 上的任意两个自变量的值 21, xx , (1)若当 1x 2x 时,都有 1( )f x )( 2xf ,则说 )(xf 在区间 D 上是增函数; (2)若当 1x 2x 时,都有 )( 1xf )( 2xf ,则说 )(xf 在区间 D 上是减函数。 3、单调性与单调区间 若函数 y = )(xf 在某个区间是增函数或减函数,则就说函数 )(xf 在这一区间具有(严格的) 单调性,这一区间叫做函数 )(xf 的单调区间。此时也说函数是这一区间上的单调函数。在单调区间 上,增函数的图象是上升的,减函数的图象是下降的。 特别提醒: 1、函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数, 而在另一些区间上不是增函数.例如函数 2xy (图 1),当 0,x 时是增函数,当 ,0x 时是减函数。而有的函数在整个定义域上都是单调的。2、函数的单调区间是其定义域的子集;3、 21, xx 应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数)。 二、用定义证明函数的单调性: 定义法证明函数在某个区间上是增(减)函数是最基本方法其步骤是: 1、取量定大小:即设 21, xx 是区间上的任意两个实数,且 1x < 2x ; 2、作差定符号:即 1 2f x f x ,并通过因式分解、配方、有理化等方法,向有利于判断差 2 的符号的方向变形; 3、判断定结论: 即根据定义得出结论。 三、判断较复杂函数的单调性的几条有用的结论 1、函数 y f x 与函数 y f x 的单调性相反 2、当 f x 恒为正或恒为负时,函数 1y f x 与函数 y f x 的单调性相反 3、在公共区间内,增函数 增函数 增函数,增函数 减函数 增函数,减函数 增函数 减 函数。 四、复合函数单调性的判断 对于函数 )(ufy 和 )(xgu ,如果 )(xgu 在区间 ),( ba 上是具有单调性,当 ),( bax 时, ),( nmu ,且 )(ufy 在区间 ),( nm 上也具有单调性,则复合函数 ))(( xgfy 在区间 ),( ba 具有 单调性的规律见下表: )(ufy ),( nmu 增 ↗ 减 ↘ )(xgu ),( bax 增 ↗ 减 ↘ 增 ↗ 减 ↘ ))(( xgfy ),( bax 增 ↗ 减 ↘ 减 ↘ 增 ↗ 以上规律还可总结为:“同增异减”。 类型一用定义证明函数的单调性 例 1:证明:函数 f(x)=2x2+4x 在(-∞,-1]上是减函数. 练习 1:证明函数 f(x)=- x在定义域上是减函数 练习 2:(2014~2015 学年度宁夏育才中学中学高一上学期月考)设函数 f(x)= 榐2 榐1 ,用单调性定义 证明在(-1,+ ∞ )上是减函数。 类型二 证明含参数的函数的单调性 例 2:已知函数 f(x)= ax x2-1 (a 为常数且 a≠0),试判断函数 f(x)在(-1,1)上的单调性. 练习 1:判断函数 f(x)=a x (a 为常数且 a≠0)在(0,+∞)上的单调性. 练习 2:判断函数 2 0x af x ax 在 ,0 上的单调性 类型三 证明抽象函数的单调性 例 3:已知函数 y=f(x)在(0,+∞)上为增函数,且 f(x)<0(x>0),试判断 F(x)= 1 f x 在(0, +∞)上的单调性,并证明. 3 练习 1:已知函数 y=f(x)在(0,+∞)上为减函数,且 f(x)<0(x>0),试判断 F(x)=f ²(x)在(0, +∞)上的单调性,并证明 练习 2:(2014~2015 学年度江苏泰州三中高一上学期期中测试)函数 f(x)=x²+2x+3 在[-1, +∞)的单调性为____ 类型四 求函数的单调区间 例 4:求函数 y=x+1 x ,x∈(0,+∞)的单调区间,并画出函数的大致图象. 练习 1:求函数 f(x)= 1 1-x 的单调区间. 练习 2:函数 2 1 1 x xy x 的单调递减区间是 类型五 利用单调性解不等式 例 5:已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1-a)查看更多