- 2021-05-12 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习(理)通用版 1-2命题及其关系、充分条件与必要条件 学案
第二节命题及其关系、充分条件与必要条件 1.命题的概念 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其关系 四种命题间的相互关系 四种命题的真假关系 (1)两个命题互为逆否命题,它们具有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系 3.充分条件、必要条件的判定❷ 充分条件与必要条件的定义 从集合角度理解 若p⇒q,则p是q的充分条件,q是p的必要条件 p成立的对象的集合为A,q成立的对象的集合为B p是q的充分不必要条件 p⇒q且qp A是B的真子集 集合与充要条件的关系❸ p是q的必要不充分条件 p q且q⇒p B是A的真子集 p是q的充要条件 p⇔q A=B p是q的既不充分也不必要条件 p q且qp A,B互不包含 否命题对题设和结论都进行否定. 在判断充分、必要条件的时候,一定要从p能否推出q,q能否推出p两方面去判断:对于q⇒p,要能够证明,而对于p q,只需举一反例即可. 小可以推大,大不可以推小,如x>2(小范围)⇒x>1(大范围),x>1(大范围) x>2(小范围). [熟记常用结论] 1.充分条件与必要条件的两个特征 (1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”. (2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”). 2.利用互为逆否命题“同真、同假”的特点,可得: (1)p⇒q等价于綈q⇒綈p; (2)qp等价于綈p綈q. [小题查验基础] 一、判断题(对的打“√”,错的打“×”) (1)“x2+2x-8<0”是命题.( ) (2)一个命题非真即假.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) 答案:(1)× (2)√ (3)√ 二、选填题 1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是( ) A.命题p的逆命题是“若x<a2+b2,则x<2ab” B.命题p的逆命题是“若x<2ab,则x<a2+b2” C.命题p的否命题是“若x<a2+b2,则x<2ab” D.命题p的否命题是“若x≥a2+b2,则x<2ab” 解析:选C 命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A、B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误. 2.“sin α=cos α”是“cos 2α=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 因为cos 2α=cos2α-sin2α=0,所以sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选A. 3.原命题“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A.0 B.1 C.2 D.4 解析:选C 当c=0时,ac2=bc2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个. 4.(2019·青岛模拟)命题“若a,b都是偶数,则ab是偶数”的逆否命题为______________________. 答案:若ab不是偶数,则a,b不都是偶数 5.“x(x-1)=0”是“x=1”的________条件(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”). 解析:x(x-1)=0⇒x=0或x=1, 即x(x-1)=0不一定有x=1成立; 但x=1能推出x(x-1)=0成立. 故“x(x-1)=0”是“x=1”的必要不充分条件. 答案:必要不充分 考点一 [基础自学过关] 命题及其关系 [题组练透] 1.命题“若x2+y2=0(x,y∈R),则x=y=0”的逆否命题是( ) A.若x≠y≠0(x,y∈R),则x2+y2=0 B.若x=y≠0(x,y∈R),则x2+y2≠0 C.若x≠0且y≠0(x,y∈R),则x2+y2≠0 D.若x≠0或y≠0(x,y∈R),则x2+y2≠0 解析:选D x2+y2=0的否定为x2+y2≠0; x=y=0的否定为x≠0或y≠0. 故“若x2+y2=0(x,y∈R),则x=y=0”的逆否命题为“若x≠0或y≠0(x,y∈R),则x2+y2≠0”. 2.有以下命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中真命题为( ) A.①② B.②③ C.④ D.①②③ 解析:选D ①“若x,y互为倒数,则xy=1”是真命题; ②“面积不相等的两个三角形一定不全等”,是真命题; ③若m≤1,则Δ=4-4m≥0,所以原命题是真命题,故其逆否命题也是真命题; ④由A∩B=B,得B⊆A,所以原命题是假命题,故其逆否命题也是假命题.故选D. 3.给出命题:若函数y=f(x)是幂函数,则函数y=f(x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A.3 B.2 C.1 D.0 解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个. [名师微点] 1.由原命题写出其他3种命题的方法 由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题. [提醒] (1)对于不是“若p,则q”形式的命题,需先改写; (2)当命题有大前提时,写其他三种命题时需保留大前提. 2.判断命题真假的2种方法 (1)直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命题,只需举出一个反例即可. (2)间接判断:根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其逆否命题的真假. 考点二 [师生共研过关] 充分条件、必要条件的判定 [典例精析] (1)(2018·天津高考)设x∈R,则“<”是“x3<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 (2)(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 (3)“a=0”是“函数f(x)=sin x-+a为奇函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [解析] (1)由<,得0<x<1,则0<x3<1,即“<”⇒“x3<1”; 由x3<1,得x<1,当x≤0时,≥, 即“x3<1”⇒ / “<”. 所以“<”是“x3<1”的充分而不必要条件. (2)a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件. (3)f(x)的定义域为{x|x≠0},关于原点对称,当a=0时,f(x)=sin x-,f(-x)=sin(-x)-=-sin x+=-=-f(x),故f(x)为奇函数; 反之,当f(x)=sin x-+a为奇函数时,f(-x)+f(x)=0,又f(-x)+f(x)=sin(-x)-+a+sin x-+a=2a,故a=0,所以“a=0”是“函数f(x)=sin x-+a为奇函数”的充要条件,故选C. [答案] (1)A (2)B (3)C [解题技法] 充分、必要条件的判断3种方法 利用定义判断 直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件是什么、结论是什么 从集合的角度判断 利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题 利用等价转化法 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假 [过关训练] 1.(2018·衡阳模拟)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选B 若y=f(x)为奇函数,则y=|f(x)|的图象关于y轴对称,反过来不成立,因为当y=f(x)为偶函数时,y=|f(x)|的图象也关于y轴对称.故选B. 2.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2, 即a2+9b2-6a·b=9a2+b2+6a·b. 又a,b均为单位向量,所以a2=b2=1, 所以a·b=0,能推出a⊥b. 由a⊥b得|a-3b|=,|3a+b|=, 能推出|a-3b|=|3a+b|, 所以“|a-3b|=|3a+b|”是“a⊥b”的充分必要条件. 3.设a,b是实数,则“a>b”是“a2>b2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件. 考点三 [师生共研过关] 充分条件、必要条件的探求与应用 [典例精析] (1)命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件是( ) A.a≥9 B.a≤9 C.a≥10 D.a≤10 (2)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,则m的取值范围为________. [解析] (1)命题“∀x∈[1,3],x2-a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.则a≥10是命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件. (2)由x2-8x-20≤0,得-2≤x≤10, ∴P={x|-2≤x≤10}. ∵x∈P是x∈S的必要条件,则S⊆P, ∴解得0≤m≤3, 故0≤m≤3时,x∈P是x∈S的必要条件. [答案] (1)C (2)[0,3] 1.(变条件)本例(2)中条件“若x∈P是x∈S的必要条件”变为“綈P是綈S的必要不充分条件”,其他条件不变.求实数m的取值范围. 解:由例题知P={x|-2≤x≤10}. ∵綈P是綈S的必要不充分条件, ∴P是S的充分不必要条件,∴P⇒S且SP. ∴[-2,10][1-m,1+m]. ∴或∴m≥9, 则m的取值范围是[9,+∞). 2.(变设问)本例(2)条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由. 解:由例题知P={x|-2≤x≤10}. 若x∈P是x∈S的充要条件,则P=S, ∴∴ 这样的m不存在. [解题技法] 根据充分、必要条件求解参数范围的方法及注意点 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象. [过关训练] 1.使a>0,b>0成立的一个必要不充分条件是( ) A.a+b>0 B.a-b>0 C.ab>1 D.>1 解析:选A 因为a>0,b>0⇒a+b>0,反之不成立,而由a>0,b>0不能推出a-b>0,ab>1,>1,故选A. 2.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( ) A.[1,+∞) B.(-∞,1] C.[-1,+∞) D.(-∞,-3] 解析:选A 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.故选A. 一、题点全面练 1.命题“若a>b,则a+c>b+c”的否命题是( ) A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c 解析:选A “若p,则q”的否命题是“若綈p,则綈q”,所以原命题的否命题是“若a≤b,则a+c≤b+c”,故选A. 2.命题“若α=,则tan α=1”的逆否命题是( ) A.若α≠,则tan α≠1 B.若α=,则tan α≠1 C.若tan α≠1,则α≠ D.若tan α≠1,则α= 解析:选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”. 3.有下列几个命题: ①“若a>b,则>”的否命题; ②“若x+y=0,则x,y互为相反数”的逆命题; ③“若x2<4,则-2<x<2”的逆否命题. 其中真命题的序号是( ) A.① B.①② C.②③ D.①②③ 解析:选C ①原命题的否命题为“若a≤b,则≤”,假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③. 4.设A,B是两个集合,则“A∩B=A”是“A⊆B”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选C 由A∩B=A可得A⊆B,由A⊆B可得A∩B=A.所以“A∩B=A”是“A⊆B”的充要条件.故选C. 5.(2019·西城区模拟)设平面向量a,b,c均为非零向量,则“a·(b-c)=0”是“b=c”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选B 由b=c,得b-c=0,得a·(b-c)=0;反之不成立.故“a·(b-c)=0”是“b=c”的必要不充分条件. 6.(2019·抚州七校联考)A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( ) A.若及格分不低于70分,则A,B,C都及格 B.若A,B,C都及格,则及格分不低于70分 C.若A,B,C至少有一人及格,则及格分不低于70分 D.若A,B,C至少有一人及格,则及格分高于70分 解析:选C 根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.故选C. 7.(2019·湘东五校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( ) A.m> B.0<m<1 C.m>0 D.m>1 解析:选C 若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m>0. 8.(2019·安阳模拟)设p:f(x)=ex+2x2+mx+1在[0,+∞)上单调递增,q:m+5≥0,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 函数f(x)在[0,+∞)上单调递增,只需f′(x)=ex+4x+m≥0在[0,+∞)上恒成立,又因为f′(x)=ex+4x+m在[0,+∞)上单调递增,所以f′(0)=1+m≥0,即m≥-1,故p是q的充分不必要条件. 二、专项培优练 (一)易错专练——不丢怨枉分 1.已知α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A ∵α,β是两个不同的平面,直线l⊂β,则“α∥β”⇒“l∥α”,反之不成立,∴α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的充分不必要条件.故选A. 2.(2019·太原模拟)“m=2”是“函数y=|cos mx|(m∈R)的最小正周期为”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A ∵当函数y=|cos mx|(m∈R)的最小正周期为时,m=±2,∴“m=2”是“函数y=|cos mx|(m∈R)的最小正周期为”的充分不必要条件. 3.“单调函数不是周期函数”的逆否命题是_______________________________. 解析:原命题可改写为“若函数是单调函数,则函数不是周期函数”,故其逆否命题是“若函数是周期函数,则函数不是单调函数”,简化为“周期函数不是单调函数”. 答案:周期函数不是单调函数 (二)素养专练——学会更学通 4.[逻辑推理]若命题A的逆命题为B,命题A的否命题为C,则B是C的( ) A.逆命题 B.否命题 C.逆否命题 D.都不对 解析:选C 根据题意,设命题A为“若p,则q”,则命题B为“若q,则p”,命题C为“若綈p,则綈q”, 显然,B与C是互为逆否命题.故选C. 5.[逻辑推理]若a,b都是正整数,则a+b>ab成立的充要条件是( ) A.a=b=1 B.a,b至少有一个为1 C.a=b=2 D.a>1且b>1 解析:选B ∵a+b>ab,∴(a-1)(b-1)<1. ∵a,b∈N*,∴(a-1)(b-1)∈N,∴(a-1)(b-1)=0, ∴a=1或b=1.故选B. 6.[数学运算]圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是( ) A.k≤-2或k≥2 B.k≤-2 C.k≥2 D.k≤-2或k>2 解析:选B 若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,∴k≥2或k≤-2,∴圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是k≤-2,故选B. 7.[数学运算]方程x2-2x+a+1=0有一正一负两实根的充要条件是( ) A.a<0 B.a<-1 C.-1<a<0 D.a>-1 解析:选B ∵方程x2-2x+a+1=0有一正一负两实根, ∴解得a<-1.故选B. 8.[数学抽象]能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________. 解析:设f(x)=sin x,则f(x)在上是增函数,在上是减函数.由正弦函数图象的对称性知,当x∈(0,2]时,f(x)>f(0)=sin 0=0,故f(x)=sin x满足条件f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不一直都是增函数. 答案:f(x)=sin x(答案不唯一)查看更多