【数学】2018届一轮复习人教A版 函数的图象 学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版 函数的图象 学案

第7讲 函数的图象 最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.‎ 知 识 梳 理 ‎1.利用描点法作函数的图象 步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.‎ ‎2.利用图象变换法作函数的图象 ‎(1)平移变换 ‎(2)对称变换 y=f(x)的图象y=-f(x)的图象;‎ y=f(x)的图象y=f(-x)的图象;‎ y=f(x)的图象y=-f(-x)的图象;‎ y=ax(a>0,且a≠1)的图象y=logax(a>0,且a≠1)的图象.‎ ‎(3)伸缩变换 y=f(x)y=f(ax).‎ y=f(x)y=Af(x).‎ ‎(4)翻转变换 y=f(x)的图象y=|f(x)|的图象;‎ y=f(x)的图象y=f(|x|)的图象.‎ 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”)‎ ‎(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(  )‎ ‎(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(  )‎ ‎(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.(  )‎ ‎(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.(  ) 解析 (1)y=f(-x)的图象向左平移1个单位得到y=f(-1-x),故(1)错.‎ ‎(2)两种说法有本质不同,前者为函数自身关于y轴对称,后者是两个函数关于y轴对称,故(2)错.‎ ‎(3)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两函数图象不同,故(3)错.‎ 答案 (1)× (2)× (3)× (4)√‎ ‎2.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)的解析式为(  )‎ A.f(x)=ex+1 B.f(x)=ex-1‎ C.f(x)=e-x+1 D.f(x)=e-x-1‎ 解析 依题意,与曲线y=ex关于y轴对称的曲线是y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-(x+1)=e-x-1.‎ 答案 D ‎3.(2016·浙江卷)函数y=sin x2的图象是(  )‎ 解析 ∵y=sin(-x)2=sin x2,且x∈R,‎ ‎∴函数为偶函数,可排除A项和C项;当x=时,sin x2=sin≠1,排除B项,只有D满足.‎ 答案 D ‎4.若函数y=f(x)在x∈[-2,2]的图象如图所示,则当x∈[-2,2]时,f(x)+f(-x)=________.‎ 解析 由于y=f(x)的图象关于原点对称∴f(x)+f(-x)=f(x)-f(x)=0.‎ 答案 0‎ ‎5.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________.‎ 解析 在同一个坐标系中画出函数y=|x|与y=a-x的图象,如图所示.由图象知当a>0时,方程|x|=a-x只有一个解.‎ 答案 (0,+∞)‎ ‎6.(2017·绍兴调研)已知函数f(x)=2x,若函数g(x)的图象与f(x)的图象关于x轴对称,则g(x)=________;若把函数f(x)的图象向左移1个单位,向下移4个单位后,所得函数的解析式为h(x)=________.‎ 解析 ∵g(x)的图象与函数f(x)=2x关于x轴对称,∴g(x)=-2x,把f(x)=2x的图象向左移1个单位,得m(x)=2x+1,再向下平移4个单位,得h(x)=2x+1-4.‎ 答案 -2x 2x+1-4‎ 考点一 作函数的图象 ‎【例1】 作出下列函数的图象:‎ ‎(1)y=;(2)y=|log2(x+1)|;‎ ‎(3)y=;(4)y=x2-2|x|-1.‎ 解 (1)先作出y=的图象,保留y=图象中x≥0的部分,再作出y=的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图①实线部分.‎ ‎(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.‎ ‎(3)∵y=2+,故函数图象可由y=图象向右平移 ‎1个单位,再向上平移2个单位即得,如图③.‎ ‎(4)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.‎ 规律方法 画函数图象的一般方法 ‎(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.‎ ‎(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.‎ ‎【训练1】 分别画出下列函数的图象:‎ ‎(1)y=|lg x|;(2)y=sin |x|.‎ 解 (1)∵y=|lg x|= ‎∴函数y=|lg x|的图象,如图①.‎ ‎(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,图象关于y轴对称,其图象如图②.‎ 考点二 函数图象的辨识 ‎【例2】 (1)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为(  )‎ ‎(2)(2015·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为(  )‎ 解析 (1)f(x)=2x2-e|x|,x∈[-2,2]是偶函数,‎ 又f(2)=8-e2∈(0,1),排除选项A,B.‎ 设g(x)=2x2-ex,x≥0,则g′(x)=4x-ex.‎ 又g′(0)<0,g′(2)>0,‎ ‎∴g(x)在(0,2)内至少存在一个极值点,‎ ‎∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C,故选D.‎ ‎(2)当x∈时,f(x)=tan x+,图象不会是直线段,从而排除A,C.‎ 当x∈时,f=f=1+,‎ f=2.∵2<1+,‎ ‎∴f0,∴a>1.‎ 则函数g(x)=|ax-2|的图象是由函数y=ax的图象向下平移2个单位,然后将x轴下方的图象翻折到x轴上方得到的,故选D.‎ 答案 (1)B (2)D 考点三 函数图象的应用(多维探究)‎ 命题角度一 研究函数的零点 ‎【例3-1】 已知f(x)=则函数y=‎2f2(x)-‎3f(x)+1的零点个数是________.‎ 解析 由‎2f2(x)-‎3f(x)+1=0得f(x)=或f(x)=1‎ 作出函数y=f(x)的图象.‎ 由图象知y=与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.‎ 因此函数y=‎2f2(x)-‎3f(x)+1的零点有5个.‎ 答案 5‎ 命题角度二 求不等式的解集 ‎【例3-2】 函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为________.‎ 解析 当x∈时,y=cos x>0.‎ 当x∈时,y=cos x<0.‎ 结合y=f(x),x∈[0,4]上的图象知,当1<x<时,<0.‎ 又函数y=为偶函数,‎ ‎∴在[-4,0]上,<0的解集为,‎ 所以<0的解集为∪.‎ 答案 ∪ 命题角度三 求参数的取值或范围 ‎【例3-3】 (2017·杭州五校联盟诊断)若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;‎ ‎②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数f(x)=有两个“伙伴点组”,则实数k的取值范围是(  )‎ A.(-∞,0) B.(0,1) C. D.(0,+∞)‎ 解析 依题意,“伙伴点组”的点满足:都在y=f(x)的图象上,且关于坐标原点对称.‎ 可作出函数y=-ln(-x)(x<0)关于原点对称的函数y=ln x(x>0)的图象,‎ 使它与直线y=kx-1(x>0)的交点个数为2即可.‎ 当直线y=kx-1与y=ln x的图象相切时,设切点为(m,ln m),‎ 又y=ln x的导数为y′=,‎ 则km-1=ln m,k=,解得m=1,k=1,‎ 可得函数y=ln x(x>0)的图象过(0,-1)点的切线的斜率为1,‎ 结合图象可知k∈(0,1)时两函数图象有两个交点.‎ 答案 B 规律方法 (1)利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.‎ ‎(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.‎ ‎(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.‎ ‎【训练3】 (1)(2015·全国Ⅰ卷)设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(  )‎ A.-1 B‎.1 ‎ C.2 D.4‎ ‎(2)已知函数y=f(x)的图象是圆x2+y2=2上的两段弧,如图所示,则不等式f(x)>f(-x)-2x的解集是________.‎ 解析 (1)设(x,y)是函数y=f(x)图象上任意一点,它关于直线y=-x的对称点为(-y,-x),由y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,可知(-y,-x)在y=2x+a的图象上,即-x=2-y+a,解得y=-log2(-x)+a,所以f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2,选C.‎ ‎(2)由图象可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x.‎ 在同一直角坐标系中分别画出y=f(x)与y=-x的图象,由图象可知不等式的解集为(-1,0)∪(1,].‎ 答案 (1)C (2)(-1,0)∪(1,]‎ ‎[思想方法]‎ ‎1.识图 对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.‎ ‎2.用图 借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.‎ ‎[易错防范]‎ ‎1.图象变换是针对自变量x而言的,如从f(-2x)的图象到f(-2x+1)的图象是向右平移个单位,先作如下变形f(-2x+1)=f,可避免出错.‎ ‎2.明确一个函数的图象关于y轴对称与两个函数的图象关于y轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.‎ ‎3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用. ‎
查看更多

相关文章

您可能关注的文档