- 2021-05-11 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学考前必看
高考数学考前10天每天必看的材料
一、 基本知识篇
(一)集合与简易逻辑
1.研究集合问题,一定要抓住集合的代表元素,如:与及
2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;
3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;
4.判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;
5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;
6.(1)含n个元素的集合的子集个数为,真子集(非空子集)个数为-1;
(2)
(3)。
二、 回归课本篇:高一年级上册(1)
(一)选择题
1.如果X = ,那么(一上40页例1(1))
(A) 0 Í X (B) {0} Î X (C) F Î X (D) {0} Í X
2.ax2 + 2x + 1 = 0至少有一个负实根的充要条件是(一上43页B组6)
(A)0
0, a ≠ 1)(1)求f(x)的定义域;(2)求使f(x)>0的x取值范围(上104页例3)
《回归课本篇》(高一年级上册(1))参考答案
1--4 DCBC 9. {(1,2)} 10. (-¥,-3]∪(2,5] 11. (1,3)
12. ;(0,1)∪(1, + ¥) 。;[0,1)
16. 答案:看课本90页例1 17. 答案:看课本P102例2 18.答案:参看课本P104(应做相应变化)
四、错题重做篇
(一)集合与简易逻辑部分
1.已知集合A={xx2+(p+2)x+1=0, p∈R},若A∩R+=。则实数P的取值范围为 。
2.已知集合A={x| -2≤x≤7 }, B={x|m+1<x<2m-1},若A∪B=A,则函数m的取值范围是_________________。
A.-3≤m≤4 B.-3<m<4 C.2<m<4 D. m≤4
3.命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题是( )
A.与原命题真值相异 B.与原命题的否命题真值相异
C.与原命题的逆否命题的真值不同 D.与原命题真值相同
(二)函数部分
4.函数y=的定义域是一切实数,则实数k的取值范围是_____________
5.判断函数f(x)=(x-1)的奇偶性为____________________
6.设函数f(x)=,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于直线y=x对称,则g(3)=_____________
7. 方程log2(9 x-1-5)-log2(3 x-1-2)-2=0的解集为___________________-
【参考答案】
1. P(-4,+∞) 2. D 3. D
4. k 5. 非奇非偶 6. g ( 3 ) = 7. { x = 2}
高考数学考前10天每天必看系列材料之二
一、 基本知识篇
(二)函数
1.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
2.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x)=;
(2)若f(x)是奇函数,0在其定义域内,则(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N=( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );
8.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
9.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
13.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或(或);
14.掌握函数的图象和性质;
函数
(b – ac≠0)
)
定义域
值域
奇偶性
非奇非偶函数
奇函数
单调性
当b-ac>0时:分别在上单调递减;
当b-ac<0时:分别在上单调递增;
在上单调递增;
在上单调递减;
图象
y
x
o
x=-c
y=a
x
y
o
15.实系数一元二次方程的两根的分布问题:
根的情况
等价命题
在上有两根
在上有两根
在和上各有一根
充要条件
注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。
一、 回归课本篇:高一年级上册(2) (一)选择题
5.已知x + x – 1 = 3,则 + 的值为
(A) 3 (B) 2 (C) 4 (D) -4
6.下列函数中不是奇函数的是
(A) y = (B) y = (C) y = (D) y = log a
7.下列四个函数中,不满足f()≤的是
(A) f(x) = ax + b (B) f(x) = x2 + ax + b (C) f(x) = (D) f(x) = - lnx
8.已知数列{an}的前n项的和 Sn= an - 1(a是不为0的实数),那么{an}
(A) 一定是等差数列 (B) 一定是等比数列
(C) 或者是等差数列,或者是等比数列 (D) 既不可能是等差数列,也不可能是等比数列
(二)填空题
13.已知数列{an}的通项公式为a n = pn + q,其中p,q是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________. (一上117页116)
14.下列命题中正确的是 。(把正确的题号都写上)
(1)如果已知一个数列的递推公式,那么可以写出这个数列的任何一项;
(2)如果{an}是等差数列,那么{an2}也是等差数列;
(3)任何两个不为0的实数均有等比中项;
(4)已知{an}是等比数列,那么{}也是等比数列
15.顾客购买一件售价为5000元的商品,如果采取分期付款,那么在一年内将款全部付清的前提下,商店又提出了下表所示的几种付款方案,供顾客选择:
方案类别
分几次付清
付款方法
每期所付款额
付款总额
与一次性付款差额
1
3次
购买后4个月第一次付款,再过4个月第二次付款,在过4个月第三次付款
2
6次
购买后2个月第一次付款,再过2个月第二次付款……购买后12个月第6次付款.
3
12次
购买后1个月第1次付款,过1个月第2次付款……购买后12个月第12次付款.
注
规定月利率为0.8%,每月利息按复利计算
说明:1.分期付款中规定每期所付款额相同.
2.每月利息按复利计算,是指上月利息要计入下月本金. (一上133页研究性学习)
(三)解答题
19.已知Sn是等比数列 {an} 的前项和S3,S9,S6,成等差数列,求证a2,a8,a5成等差数列。(上132页例4)
20 .在数列{an}中,a1 = 1,an+1 = 3Sn(n≥1),求证:a2,a3,┅,an是等比数列。(一上142页B组5)
《回归课本篇》(高一年级上册(2))参考答案
5—8 BACC 13. 是、p + q、p 14. (1)(4)
15. 答案:看课本P134 19. 答案:看课本P132例4 20.略
四、错题重做篇
(三)数列部分
8.x=是a、x、b成等比数列的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既非充分又非必要条件
9.已知数列{an}的前n项和Sn=an-1(a),则数列{an}_______________
A.一定是A·P B.一定是G·P
C.或者是A·P或者是G·P D.既非等差数列又非等比数列
10.A·P{an}中, a1=25, S17=S9,则该数列的前__________项之和最大,其最大值为_______。
【参考答案】8. D 9. C 10. 13 , 169
高考数学考前10天每天必看系列材料之三
一、 基本知识篇
(三)数列
1.由Sn求an,an={ 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;
2.等差数列;
3.等比数列;
4.首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式解决;
5.熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;
6. 在等差数列中,,;在等比数列中,;
7. 当时,对等差数列有;对等比数列有;
8.若{an}、{bn}是等差数列,则{kan+pbn}(k、p是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kan}、{anbn}等也是等比数列;
9. 若数列为等差(比)数列,则也是等差(比)数列;
10. 在等差数列中,当项数为偶数时,;项数为奇数时,(即);
11.若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形式:(n≥2),于是可依据等比数列的定义求出其通项公式;
回归课本篇:高一年级下册(1)
1、若一个6000的角的终边上有一点P(-4 , a),则a的值为
(A) 4 (B) -4 (C) ± 4 (D)
2、 = (A)- (B) ( C) (D)-
3、= (P38例3)
(A) - (B) - (C) (D)
4、cosa + sina = (P39例5)
(A) 2sin(+ a ) (B) 2sin(+ a ) (C) 2cos (+ a ) (D) 2cos(-a )
5、tan200 + tan400 + tan200 tan400 = _________。 (P40练习4(1))
6、(1 + tan440)(1 + tan10) = ______;(1 + tan430)(1 + tan20) = ______;(1 + tan420)(1 + tan30) = ______;(1 + tana )(1 + tanb ) = ______ (其中a + b = 45 0)。 (P88A组16)
7、化简sin500(1 + tan100) 。(P43例3)
8、已知tana = ,则sin2a + sin2a = __________。
9、求证(1)1 + cosa =2cos2 ;(2) 1-cosa =2sin2 ;(3) 1 + sina = (sin+cos )2 ;
(4) 1-sina = (sin-cos )2 ;(5) = tan2. (P45例4)(以上结论可直接当公式使用,主要用来进行代数式的配方化简)。
10、cos(p + a ) + cos(p -a )(其中k Î Z) = _________。(P84例1)
11、已知cos(+ x) = ,的解集。
(P63例4)
14、已知函数y = Asin(w x + j ),x Î R (其中A>0,w >0)的图象在y轴右侧的第一个最高点(
函数取最大值的点)为M(2,2),与x轴在原点右侧的第一个交点为N(6,0),求这个函数的解析式。(P84例3)
《回归课本篇》(高一年级下册(1))参考答案
1~4、BBDA; 5、; 6、2; 7、1; 8、1;
10、(-1)k (cosa -sina ),k Î Z; 11、-;12、45°;
13、解:(1) 参考课本答案(求周期-列表-描点);(2)参考课本答案(注意做相应变化);(3)递减区间是[kp + ,kp + ],k Î Z;(4) y取得最小值的x的集合是;
(5) 。 14、y = 2sin(x + )
四、错题重做篇 (四)三角函数部分
11.设=tan成立,则的取值范围是_______________
12.函数y=sin4x+cos4x-的相位________,初相为______ 。周期为___ _,单调递增区间为________。
13.函数f(x)=的值域为______________。
14.若2sin2α的取值范围是______________
15.已知函数f (x) =2cos()-5的最小正周期不大于2,则正整数k的最小值是___________
【参考答案】
11. 12.
13. 14. [0 , ] 15. 13
高考数学考前10天每天必看系列材料之四
一、 基本知识篇
(四)三角函数
1.三角函数符号规律记忆口诀:一全正,二正弦,三是切,四余弦;
2.对于诱导公式,可用“奇变偶不变,符号看象限”概括;
3.记住同角三角函数的基本关系,熟练掌握三角函数的定义、图像、性质;
4.熟知正弦、余弦、正切的和、差、倍公式,正余弦定理,处理三角形内的三角函数问题勿忘三内角和等于1800,一般用正余弦定理实施边角互化;
5.正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴的交点;正(余)切型函数的对称中心是图象和渐近线分别与轴的交点,但没有对称轴。
6.(1)正弦平方差公式:sin2A-sin2B=sin(A+B)sin(A-B);(2)三角形的内切圆半径r=;(3)三角形的外接圆直径2R=
(五)平面向量
1.两个向量平行的充要条件,设a=(x1,y1),b=(x2,y2),为实数。(1)向量式:a∥b(b≠0)a=b;(2)坐标式:a∥b(b≠0)x1y2-x2y1=0;
2.两个向量垂直的充要条件, 设a=(x1,y1),b=(x2,y2), (1)向量式:a⊥b(b≠0)ab=0; (2)坐标式:a⊥bx1x2+y1y2=0;
3.设a=(x1,y1),b=(x2,y2),则ab==x1x2+y1y2;其几何意义是ab等于a的长度与b在a的方向上的投影的乘积;
4.设A(x1,x2)、B(x2,y2),则S⊿AOB=;
5.平面向量数量积的坐标表示:
(1)若a=(x1,y1),b=(x2,y2),则ab=x1x2+y1y2;;
(2)若a=(x,y),则a2=aa=x2+y2,;
一、 回归课本篇:高一年级下册(2)
15、下列各式能否成立?为什么?
(A) cos2x = (B) sinx-cosx = (C) tanx + = 2 (D) sin3x = - (P89A组25)
y
1
x
1
O
16、求函数y = 的定义域。(P91B组12)
17、如图是周期为2p 的三角函数 y = f (x) 的图象,则 f (x) 可以写成
(A) sin [2 (1-x)] (B) cos (1-x) (C) sin (x-1) (D) sin (1-x)
18、与正弦函数关于直线x = p对称的曲线是
(A) (B) (C) (D)
19、 x cos 1-y sin 1=0的倾斜角是
(A) 1 (B) 1+ (C) 1- (D) -1+
20、函数在区间[a,b]是减函数,且,则函数上
(A)可以取得最大值-A (B)可以取得最小值-A
(C)可以取得最大值A (D)可以取得最小值A
21、已知, 为两个单位向量,下列四个命题中正确的是(P149A组2)
(A) = (B) 如果 与 平行,则 =
(C) · = 1 (D) 2 = 2
22、和向量 = (6,8)共线的单位向量是__________。(P150A组17)
23、已知 = (1,2), = (-3,2),当k为何值时,(1)k +与-3垂直?(2) k +与-3平行?平行时它们是同向还是反向?(P147例1)
24、已知 ||=1,||=。
(I)若//,求·;
(II)若,的夹角为135°,求 |+| .(2004广州一模)
《回归课本篇》(高一年级下册(2))参考答案
15、(A) 否 (B) 否 (C) 能 (D) 能
16、(-+ kp, + kp)∪(+ kp, + kp), k Î Z 17~21、DADDD
22、(, ),(-, -) 23、(1)k = 19;(2)k = -,反向。
24、解:(I)∵//, ①若,共向,则 ·=||•||=,
②若,异向,则·=-||•||=-。
(II)∵,的夹角为135°, ∴ ·=||•||•cos135°=-1,
∴|+|2=(+)2 =2+2+2·=1+2-2=1, ∴。
四、错题重做篇 (五)平面向量部分
16.已知向量=(a,b),向量⊥且则的坐标可能的一个为( )
A.(a,-b) B.(-a,b) C.(b,-a) D.(-b,-a)
17.将函数y=x+2的图象按=(6,-2)平移后,得到的新图象的解析为_____________
18.若o为平行四边形ABCD的中心,=41, 等于( )
A. B. C. D.
19.若,且(),则实数的值为____________.
【参考答案】16. C 17. y = x-8 18. B 19. λ=
高考数学考前10天每天必看系列材料之五
一、 基本知识篇 (六)不等式
1.掌握不等式性质,注意使用条件;
2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法;
3.掌握用均值不等式求最值的方法,在使用a+b≥(a>0,b>0)时要符合“一正二定三相等”;注意均值不等式的一些变形,如。
二、 思想方法篇 (五)配方法
配方法是指将一代数形式变形成一个或几个代数式平方的形式,其基本形式是:ax2+bx+c=.高考中常见的基本配方形式有:
(1) a2+b2= (a + b)2- 2a b = (a -b) 2+ 2 ab;
(2) (2) a2+ b2+ ab =;
(3) (3)a2+ b2+c2= (a+b + c)2- 2 ab – 2 a c – 2 bc;
(1) (4) a2+ b2+ c2- a b – bc – a c = [ ( a - b)2 + (b - c)2 + (a - c)2];
(5) ;
一、 配方法主要适用于与二次项有关的函数、方程、等式、不等式的讨论,求解与证明及二次曲线的讨论回归课本篇:高二年级上册(1)
(一)选择题 1、下列命题中正确的是
(A) ac2>bc2 Û a>b (B) a>b Û a3>b3 (C) Û a + c>b + d (D) loga20的解集是 (二上31页B组7)
(A) (B) (C) (D)
3、若x<0,则2 + 3x + 的最大值是 (二上11页习题4)
(A) 2 + 4 (B) 2±4 (C) 2-4 (D) 以上都不对
(二)填空题
7、当点(x,y)在以原点为圆心,a为半径的圆上运动时,点(x + y,xy)的轨迹方程是_____。(二上89页B组10)
8、过抛物线y2 = 2px(p>0)的焦点F的直线与抛物线相交于A、B两点,自A、B向准线作垂线,垂足分别为A/、B/。则∠A/FB/ = _________。 (二上133页B组2)
(三)解答题
11、两定点的坐标分别为A(-1,0),B(2,0),动点满足条件∠MBA = 2∠MAB,求动点M的轨迹方程。(二上133页B组5)
12、设关于的不等式的解集为,已知,求实数的取值范围。
《回归课本篇》(高二年级上册(1))参考答案
(一)选择题 1~3 BAC(注意符号)
(二)填空题 7、x2 = a2 + 2y(-a≤x≤a)
8、证明: 设A、B两点的坐标分别为(x1,y1)、(x2,y2),则A/(-,y1)、B/(-,y2)。
∴ kA/F·kB/F = ,
又 ∵ y1y2 = -p2 , ∴ kA/F·kB/F = -1, ∴ ∠A/FB/ = 900 .
(三)解答题
11、解:设∠MBA = a ,∠MAB = b (a >0,b >0),点M的坐标为(x,y)。
∵ a = 2b ,∴ tana = tan2b = .
当点M在x轴上方时,tana = -,tanb = ,
所以- = ,即3x2-y2 = 3。
当点M在x轴下方时,tana = ,tanb = ,仍可得上面方程。
又a = 2b ,∴ | AM |>| BM | .
因此点M一定在线段AB垂直平分线的右侧,所求的轨迹方程为双曲线3x2-y2 = 3的右支,且不包括x轴上的点。
12、解:;
时,,时,。
∴时, 。
四、错题重做篇 (六)不等式部分
20.设实数a,b,x,y满足a2+b2=1,x2+y2=3, 则ax+by的取值范围为_______________.
21.-4<k<o是函数y=kx2-kx-1恒为负值的___________条件
22.函数y=的最小值为_______________
23.已知a,b,且满足a+3b=1,则ab的最大值为___________________.
【参考答案】20. [-] 21. 充分非必要条件 22. 23.
高考数学考前10天每天必看系列材料之六
一、 基本知识篇 (七)直线和圆的方程
1.设三角形的三顶点是A(x1,y1)、B(x2,y2)、C(x3,y3),则⊿ABC的重心G为();
2.直线l1:A1x+B1y+C1=0与l2: A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0;
3.两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是;
4.Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件 :A=C≠0且B=0且D2+E2-4AF>0;
5.过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
6.以A(x1,y2)、B(x2,y2)为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0;
7.求解线性规划问题的步骤是:(1)根据实际问题的约束条件列出不等式;(2)作出可行域,写出目标函数;(3)确定目标函数的最优位置,从而获得最优解;回归课本篇:高二年级上册(2) (一)选择题
4、已知目标函数z=2x+y,且变量x、y满足下列条件: ,则(广州抽测)
(A) z最大值=12,z无最小值 (B) z最小值=3,z无最大值
(C) z最大值=12,z最小值=3 (D) z最小值=,z无最大值
5、将大小不同的两种钢板截成A、B两种规格的成品,每张钢板可同时解得这两种规格的成品的块数如下表所示:
规格类型
钢板类型
A规格
B规格
第一种钢板
2
1
第二种钢板
1
3
若现在需要A、B两种规格的成品分别为12块和10块,则至少需要这两种钢板张数(广州二模)
(A)6 (B) 7 (C) 8 (D) 9
6、 函数f(q ) = 的最大值和最小值分别是(二上82页习题11)
(A) 最大值 和最小值0 (B) 最大值不存在和最小值
(C) 最大值 -和最小值0 (D) 最大值不存在和最小值-
(二)填空题 9、人造地球卫星的运行轨道是以地心为一个焦点的椭圆。设地球半径为R,卫星近地点、远地点离地面的距离分别是r1,r2,则卫星轨道的离心率 = _________。(二上133页B组4)
10、已知a>b>0,则a2 + 的最小值是_________。16 (二上31页B组3)
(三)解答题
13、已知△ABC的三边长是a,b,c,且m为正数,求证 + > 。(二上17页习题9)
14、已知关于的不等式的解集为。
(1)当时,求集合; (2)若,求实数的取值范围。
《回归课本篇》(高二年级上册(2))参考答案
(一)选择题 4~6 B(注意虚实)B(注意整点)A(注意横纵坐标不要搞颠倒)
(二)填空题 9、e =
10、解:由a>b>0知a-b>0, ∴ b(a-b) = ()2≤( )2 = 。
∴ a2 + ≥a2 + ≥2= 16。
上式中两个“≥”号中的等号当且仅当a2 = ,b = a-b时都成立。
即当a = 2,b = 时,a2 + 取得最小值16。
(三)解答题 13、证明:∵ f(x) = (m>0) = 1-在(0, + ¥)上单调递增,
且在△ABC中有a + b > c>0, ∴ f(a + b)>f(c), 即 > 。
又∵ a,b Î R*, ∴ + > + = ,
∴ + > 。 另解:要证+ > ,
只要证a(b + m)(c + m) + b(a + m)(c + m)-c(a + m)(b + m)>0,
即abc + abm + acm + am2 + abc + abm + bcm + bm2-abc-acm-bcm-cm2>0,
即abc + 2abm + (a + b-c)m2>0,
由于a,b,c为△ABC的边长,m>0,故有a + b> c,即(a + b-c)m2>0。
所以abc + 2abm + (a + b-c)m2>0是成立的, 因此 + > 。
14、 解:(1)时,不等式为,解之,得
(2)时,
时,不等式为, 解之,得 ,
则 , ∴满足条件 综上,得 。
四、错题重做篇 (七)直线和圆
24.已知直线与点A(3,3)和B(5,2)的距离相等,且过二直线:3x-y-1=0和
:x+y-3=0的交点,则直线的方程为_______________________
25.有一批钢管长度为4米,要截成50厘米和60厘米两种毛坯,且按这两种毛坯数量比大于配套,怎样截最合理?________________-
26.已知直线x=a和圆(x-1)2+y2=4相切,那么实数a的值为_______________
27.已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则的值为 。
【参考答案】24.x-6y+11 = 0或x+2y-5 = 0 25. 50厘米2根,60厘米5根
26. a = 3或a =-1 27. 5
2006年高考数学考前10天每天必看系列材料之七
一、 基本知识篇(八)圆锥曲线方程
1.椭圆焦半径公式:设P(x0,y0)为椭圆(a>b>0)上任一点,焦点为F1(-c,0),F2(c,0),则(e为离心率);
2.双曲线焦半径公式:设P(x0,y0)为双曲线(a>0,b>0)上任一点,焦点为F1(-c,0),F2(c,0),则:(1)当P点在右支上时,;
(2)当P点在左支上时,;(e为离心率);
另:双曲线(a>0,b>0)的渐近线方程为;
3.抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p>0)上任意一点,F为焦点,则;y2=2px(p<0)上任意一点,F为焦点,则;
4.涉及圆锥曲线的问题勿忘用定义解题;
5.共渐进线的双曲线标准方程为为参数,≠0);
6.计算焦点弦长可利用上面的焦半径公式,
一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长
,这里体现了解析几何“设而不求”的解题思想;
7.椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a>0,b>0)的焦点到渐进线的距离为b;
8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx2=1;
9.抛物线y2=2px(p>0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1)=x1+x2+p;(2)y1y2=-p2,x1x2=;
10.过椭圆(a>b>0)左焦点的焦点弦为AB,则,过右焦点的弦;
11.对于y2=2px(p≠0)抛物线上的点的坐标可设为(,y0),以简化计算;
12.处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(a>b>0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a>0,b>0),类似可得:KAB.KOM=;对于y2=2px(p≠0)抛物线有KAB=
13.求轨迹的常用方法:
(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;
(3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;
(4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
一、 回归课本篇:高二年级下册(1)
1、 确定一个平面的条件有:__________________________________________。
2、 “点A在平面a 内,平面内的直线a不过点A”表示为________________________。
3、异面直线所成的角的范围是__________;直线与平面所成角的范围是_________________;二面角的范围是______________;向量夹角的范围是________________。
4、 如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在______;经过一个角的顶点引这个角所在平面的斜射线,设它和已知角两边的夹角为锐角且相等,这条斜线在平面内的射影是______。(P23例4、P25习题6)
5、 四面体ABCD中,若AB⊥CD,AC⊥BD,则AD____BC;若AB⊥AC,AC⊥AD,AD⊥AB,则A在平面BCD上的射影是△BCD的_____心;若AB⊥AC,AC⊥AD,则AD____AB;若AB = AC = AD,则A在平面BCD上的射影是△BCD的_____心;若四面体ABCD是正四面体,则AB_____CD。
6、 已知a∩b = CD,EA⊥a ,垂足为A,EB⊥b ,垂足为B,求证(1)CD⊥AB;(2)二面角a -CD-b + ∠AEB = p 。(P25习题4) (如果两异面直线与二面角的两个面分别垂直,则异面直线所成的角与二面角相等(二面角为锐角或直角时)或互补(二面角为钝角时))
7、 对空间任一点O和不共线的三点A、B、C,试问满足向量关系式 = x+ y + z(
其中x + y + z = 1)的四点P、A、B、C是否共面?(P30例2)
4、 a在b上的射影是__________;b在a上的射影是__________。
5、 已知OA、OB、OC两两所成的角都为600,则OA与平面BOC所成角的余弦为_____。
10、已知两条异面直线所成的角为q ,在直线a、b上分别取E、F,已知A/E = m,AF = n,
EF = l,求公垂线段AA/的长d。
11、已知球面上的三点A、B、C,且AB = 6cm,BC = 8cm,AC = 10cm,球的半径为13cm。求球心到平面ABC的距离。(P79例3)
12、 如果直线AB与平面a 相交于点B,且与a 内过点B的三条直线BC、BD、BE所成的角相等,求证AB⊥a 。(P80A组6)
13、一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角。(P80A组7)
14、P、A、B、C是球面O上的四个点,PA、PB、PC两两垂直,且PA = PB= PC = 1,求球的体积和表面积。(P81 B组7)
《回归课本篇》(高二年级下册(1))参考答案
1、不共线的三点、一直线和直线外一点、两条相交直线、两条平行直线。
2、A Î a ,A Ï a,a Ì a 3、(0,];[0,];[0,p];[0,p]
4、这个角的平分线上;这个角的平分线 5、⊥;垂心;⊥;外心;⊥
7、解:原式可变为= (1-y-z) + y + z,
-= y(-) + z(-),
= y + z, ∴ 点P与A、B、C共面。
8、; 9、 10、d = 11、12cm
13、解:a-l-b 是直二面角,作AC⊥于l于C,BD⊥l于D,则∠ABC = ∠BAD = 300,
设| | = a,则| | = a,| | = a,
=++, ||2 =2 = (++)2 = ||2 + ||2 + ||2,
即a2 = (a)2 + ||2 + (a)2 。 ∴ ||2 = a2,|| = a。
又2 =·+·+·,
即a2 = a··cos600 + a·acos<,> + a··cos600。
∴ cos<,> = ,∴ <,> = 450。 14、p ; 3p
四、错题重做篇 (八)圆锥曲线部分
28.过圆外一点P(5,-2)作圆x2+y2-4x-4y=1的切线,则切线方程为__________。
29.已知圆方程为x2+y2+8x+12=0,在此圆的所有切线中,纵横截距相等的条数有____________
30.双曲线实轴在x轴上,且与直线y=2x有且只有一个公共点o(o,o),则双曲线的离心率e=______________。
31.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是____________
32.过双曲线x2-的右焦点作直线交双曲线于A、B两点,且,则这样的直线有_______条。
33.经过抛物线y2 = 4x的焦点弦的中点轨迹方程是( )
A.y2=x-1 B.y2=2(x-1) C.y2=x- D.y2=2x-1
【参考答案】28. 3x+4y-7 = 0或x = 5 29. 4 30.
31. 0 < k < 1 32. 3 33. B
2006年高考数学考前10天每天必看系列材料之八
一、 基本知识篇(九)直线、平面、简单几何体
1.从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
A
2. 已知:直二面角M-AB-N中,AE M,BF N,∠EAB=,∠ABF=,异面直线AE与BF所成的角为,则
3.立平斜公式:如图,AB和平面所成的角是,AC在平面内,AC和AB的射影AB成,设∠BAC=,则coscos=cos;
4.异面直线所成角的求法:
(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;
(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;
5.直线与平面所成的角
斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;
6.二面角的求法
(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;
(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;
(4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此方法不必在图形中画出平面角;
特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
7.空间距离的求法
(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;
(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;
(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;
8.正棱锥的各侧面与底面所成的角相等,记为,则S侧cos=S底;
9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为因此有cos2+cos2+cos2=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为则有cos2+cos2+cos2=2;
10.正方体和长方体的外接球的直径等与其体对角线长;
11.欧拉公式:如果简单多面体的顶点数为V,面数为F,棱数为E.那么V+F-E=2;并且棱数E=各顶点连着的棱数和的一半=各面边数和的一半;
12.球的体积公式V=,表面积公式;掌握球面上两点A、B间的距离求法:(1)计算线段AB的长,(2)计算球心角∠AOB的弧度数;(3)用弧长公式计算劣弧AB的长。
回归课本篇:高二年级下册(2)
15、求证:(P96习题10)
16、 = ________。 (P111习题10)
17、 = _________(n为偶数) 。
18、甲、乙两人独立地解同一问题,甲解决这个问题的概率是P1,乙解决这个问题的概率P2,那么其中至少有1人解决这个问题的概率是
(A) P1 + P2 (B) P1· P2 (C) 1-P1· P2 (D) (1-P1 )(1-P2)
19、(1 + x)2n(n Î N*)的展开式中,系数最大的项是
(A) 第 + 1项 (B) 第n 项 (C) 第n + 1项 (D) 第n 项与第n + 1项
20、已知,求.(P 142A组4(1))
21、(1)求(9x-)18展开式中常数项;(2)已知的展开式中的第9项、第10项、第11项的二项式系数成等差数列,求n;(3)(1 + x + x2)(1-x)10求展开式中x4的系数。(P 143A组12)
22、填空:(1)有面值为1元、2元、5元的邮票各2张,从中任取3张,其面值之和恰好是8元的概率是_______;
(2) 将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取1个,其中恰有2面涂有颜色的概率是_______;
(3) 在数学选择题给出的4个答案中,恰有1个是正确的,某同学在做3道数学选择题时,随意地选定其中的正确答案,那么3道题都答对的概率是________;
(4) 对于一段外语录音,甲能听懂的概率是80%,乙能听懂的概率是70%,两人同时听这段录音,其中至少有一人能听懂的概率是______;
(5) 某人每天早晨乘坐的某一斑次公共汽车的准时到站率为90%,他在5天乘车中,此班次公共汽车恰好有4天准时到站的概率是________。(P 144A组16)
23、填空:(1)已知 = 21,那么n = _______;
(2)一种汽车牌照号码由2个英文字母后接4个数字组成,且2个英文字母不能相同,不同牌照号码的个数是_______,(P 145B组1)
24、选择题:(1) 以正方体的顶点为顶点的三棱锥的个数是
(A) (B) (C) -6 (D) -12
(2) 在的展开式中,各项系数的和是
(A) 1 (B) 2n (C) -1 (D) 1或-1
25、求证:(1) n·n! = (n + 1)!-n!;
(2) ;
(3) 。
《回归课本篇》(高二年级下册(2))参考答案
16、1 17、2n-1-1 18、D 19、D 20、28
21、T13 = 18564;n = 14或23;x4的系数是135。
22、;;;0.94;0.328 23、6;×104 24、DD
四、错题重做篇 (九)直线、平面与简单几何体
34.已知二面角α-AB-β为120°,CDα,CD⊥AB,EFβ,EF与AB成30°角,则异面直线CD与EF所成角的余弦值为
35.棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为
36.直二面角α--β的棱上有一点A,在平面α、β内各有一条射线AB,AC与成450,AB,则∠BAC= 。
37.直线与平面α成角为300,则m与所成角的取值范围是
38.一凸多面体的面数为8,各面多边形的内角总和为16π,则它的棱数为( )
A.24 B.22 C.18 D.16
它的顶点个数为 。
【参考答案】34. 35. 36. 600或1200 37. [ 300 , 900] 38. D 10
2006年高考数学考前10天每天必看系列材料之九
一、 基本知识篇
(十)排列组合二项式定理和概率
1.排列数公式:=n(n-1)(n-2)…(n-m+1)=(m≤n,m、n∈N*),当m=n时为全排列=n(n-1)…21;
2.组合数公式:(m≤n),;
3.组合数性质:;
4.常用性质:n.n!=(n+1)!-n!;即(1≤r≤n);
5.二项式定理:(1)掌握二项展开式的通项:
(2)注意第r+1项二项式系数与第r+1系数的区别;
6.二项式系数具有下列性质:
(1) 与首末两端等距离的二项式系数相等;
(2) 若n为偶数,中间一项(第+1项)的二项式系数最大;若n为奇数,中间两项(第和+1项)的二项式系数最大;
(3)
7.F(x)=(ax+b)n展开式的各项系数和为f(1);奇数项系数和为;偶数项的系数和为;
8.等可能事件的概率公式:(1)P(A)=;(2)互斥事件分别发生的概率公式为:P(A+B)=P(A)+P(B);(3)相互独立事件同时发生的概率公式为P(AB)=P(A)P(B);(4)独立重复试验概率公式Pn(k)=(5)如果事件A、B互斥,那么事件A与、与及事件与也都是互斥事件;(6)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1-P(AB)=1-P(A)P(B);(7)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1-P(
)=1-P()P();
(十一)抽样方法、总体分布的估计与总体的期望和方差
1.掌握抽样的二种方法:(1)简单随机抽样(包括抽签符和随机数表法);(2)分层抽样,常用于某个总体由差异明显的几部分组成的情形;
2.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;
3.总体特征数的估计:(1)学会用样本平均数去估计总体平均数(2)学会用样本方差去估计总体方差及总体标准差;
三、回归课本篇:《回归课本篇》(选修II)
(一)选择题 1、下列命题中不正确的是
(A) 若x ~B(n,p),则Ex = np,Dx = np(1-p) (B) E(ax + b) = aEx + b
(C) D(ax + b) = a Dx (D) Dx = Ex 2-(Ex )2
2、下列函数在处连续的是 (2004广州一模)
(A) (B)
(C) (D)
3、已知则的值是
(A)-4 (B) 0 (C) 8 (D) 不存在
(二)填空题
7、[( + 3)2-x( + 2)3] = _______。(三选修102页例2)
(三)解答题
9、一次考试出了12个选择填空题,每个题有四个可供选择的答案,一个是正确的,三个是错误的,某同学只知道其中9个题的正确答案,其余3个题完全靠猜测回答。求这个同学卷面上正确答案不少于10个的概率。
10、(1)求y = -ln(x + 1)导数。(三选修102页B组1(4))
(2)求y = sin2x-x,x Î [-,]的最值。(三选修102页B组5(4))
《回归课本篇》(选修II)参考答案
(一)选择题 CAC (二)填空题 7、-3
(三)解答题
9、解:“这个同学卷面上正确答案不少于10个”等价于3个选择题的答案中正确答案的个
数不少于1个,该事件是3次独立重复试验,在每次试验中选中正确答案的概率为。
∴ 所求事件的概率为,
或。
10、(1)y/ = ;(2)ymax = ,ymin = - 。
四、错题重做篇 (十)排列、组合、二项式定理、概率
39.计算C+C的值
40.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为( )
A.120 B.119 C.110 D.109
41.已知()9的开展式中x3的系数为,则常数a为 。
42.定义:,其中i,n且i≤n。若f ( x ) =,则的值为
A.2 B.0 C.-1 D.-2
43.12张分别标以1,2,…,12的卡片,任意分成两叠,每叠6张。
(1)若1,2,3三张在同一叠的概率为。其中、m为互质的正整数,则等于( )
A.2 B.3 C.5 D.7 E.11
m等于( )
A.11 B.12 C.15 D.35 E.77
(2)若1,2,3,4四张中,每叠各有两张的概率为。其中n、m为互质的正整数,则n=( )
A.2 B.3 C.5 D.7 E.11
45.已知A、B、C为三个彼此互相独立事件,若事件A发生的概率为,事件B发生的概率为,事件C发生的概率为,则发生其中两个事件的概率为 。
46.一箱磁带最多有一盒次品。每箱装25盒磁带,而生产过程产生次品带的概率是0.01。则一箱磁带最多有一盒次品的概率是 。
【参考答案】39. 466 40. D 41. 4 42. D 43.(1)A A (2)C
45. 46. C(0.01)·(0.99 )24+C( 0.99 )25
2006年高考数学考前10天每天必看系列材料之十
一、 基本知识篇 (十二)导数及应用
1.导数的定义:f(x)在点x0处的导数记作;
2.根据导数的定义,求函数的导数步骤为:(1)求函数的增量(2)求平均变化率;(3)取极限,得导数;
3.导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是相应地,切线方程是
4.常见函数的导数公式:
5.导数的应用:(1)利用导数判断函数的单调性:设函数y=f(x)在某个区间内可导,如果那么f(x)为增函数;如果那么f(x)为减函数;如果在某个区间内恒有那么f(x)为常数;
(2)求可导函数极值的步骤:①求导数;②求方程的根;③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得最大值;如果左负右正,那么函数y=f(x)在这个根处取得最小值;
(3)求可导函数最大值与最小值的步骤:①求y=f(x)在(a,b)内的极值;②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
二、思想方法篇 (十)7.另外:还有数学归纳法、同一法、整体代换法等.
三、回归课本篇:《回归课本篇》(选修II-2)
(一)选择题 4、(1<| a |<| b |) = (三选修102页例2)
(A) 0 (B) a (C) b (D)
5、下列命题中正确的是
(A) a·b = c·b Þ a = c (B) z2 = | z |2 (z Î C)
(C) a2 = | a |2 (D) z + = 0 Û z Î R
6、已知z是虚数,则方程z3 = | | 的解是 (三选修235页B组3(2))
(A) z = -±i (B) z = -±i , z = 0, z = ±1
(C)z = --i (D) z = -+ i
(二)填空题
8、已知复数z = ,则| z | = ______。(三选修224页习题9)
(三)解答题 11、已知空间四边形OABC,其对角线为OB,AC,M,N分别是对边OA,BC的中点,点G在线段MN上,且使MG = 2GN,用基向量,,表示向量。(考试大纲110页26题)
《回归课本篇》(选修II-2)参考答案
(一)选择题 ACA (二)填空题 8、400
(三)解答题 11、证明: = + = + = + (-)
= + ×[(+)-] = + + 。
四、错题重做篇 (十一)统计与概率
47.一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工和某种情况,决定采取分层抽样的方法。抽取一个容量为10的样本,每个管理人员被抽到的概率为( )A. B. C. D.以上都不对
48.如果c是(1+x)5的展开式中x3的系数而在总体中抽出一个样本:2,3,4,6,7,S2表示该样本的方差,S表示[(2-c)2+(3-c)2+(4-c)2+(6-c)2+(7-c)2],则S2与S的大小关系为
49.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析。运用系统抽样方法抽取样本时,每组的容量为 。
(十二)导数 50.若f ( x ) = x3,f ′( x0) =3,则x0的值为( )
A.1 B.-1 C.±1 D.3
51.若,f ′( x0) =-3,则=( )
A.-3 B.-6 C.-9 D.-12
52.垂直于直线2x-6y+1=0且与曲线y = x3+3x-5相切的直线方程是 。
53.若f ( x ) = ax3+bx2+cx+d(a>0)为增函数,则a、b、c的关系式为(等式或不等式(组))是 .
54.设f ( x ) = x3-x2-2x+5,当时,f ( x ) < m恒成立,则实数m的取值范围为 .
55.函数y = f ( x ) = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b = 。
【参考答案】47. C 48. S2 < S 49. 25 50. C 51. D
52. 3x+y+5 = 0 53 b2 < 3ac且a > 0 54. m > 7 55 a = 4 b = -11
查看更多