- 2021-05-11 发布 |
- 37.5 KB |
- 35页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年高中数学新教材同步必修第一册 第3章 第2课时 函数的最大(小)值
第三章 3.2.1 单调性与最大(小)值 学习目标 XUEXIMUBIAO 1.了解函数的最大(小)值的概念及其几何意义. 2.会借助单调性求最值. 3.掌握求二次函数在闭区间上的最值的方法. NEIRONGSUOYIN 内容索引 知识梳理 题型探究 随堂演练 1 知识梳理 PART ONE 最值 条件 几何意义 最大值 ①对于∀x∈I,都有 , ②∃x0∈I,使得_________ 函数y=f(x)图象上最高点的纵坐标 最小值 ①对于∀x∈I,都有 , ②∃x0∈I,使得_________ 函数y=f(x)图象上最低点的纵坐标 知识点一 函数的最大(小)值及其几何意义 f(x)≤M f(x0)=M f(x)≥M f(x0)=M 思考 函数f(x)=x2+1≥-1总成立,f(x)的最小值是-1吗? 答案 f(x)的最小值不是-1,因为f(x)取不到-1. 知识点二 求函数最值的常用方法 1.图象法:作出y=f(x)的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数 的最大(小)值. 2.运用已学函数的值域. 3.运用函数的单调性: (1)若y=f(x)在区间[a,b]上是增函数,则ymax= ,ymin= . (2)若y=f(x)在区间[a,b]上是减函数,则ymax= ,ymin= . 4.分段函数的最大(小)值是指各段上的最大(小)值中最大(小)的那个. f(b) f(a) f(a) f(b) 1.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值为____,最大值为____. 预习小测 自我检验 YU XI XIAO CE ZI WO JIAN YAN -1 2 3.函数y=2x2+2,x∈R的最小值是___.2 2 题型探究 PART TWO 一、图象法求函数的最值 解 作出函数f(x)的图象(如图). 由图象可知,当x=±1时,f(x)取最大值为f(1)=f(-1)=1. 当x=0时,f(x)取最小值为f(0)=0, 故f(x)的最大值为1,最小值为0. 反思 感悟 图象法求函数最值的一般步骤 跟踪训练1 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并 写出值域. 图象如图所示, 由图象知,函数y=-|x-1|+2的最大值为2,没有最小值, 所以其值域为(-∞,2]. 二、利用函数的单调性求最值 (1)判断函数f(x)的单调性并证明; 解 f(x)是增函数,证明如下: 任取x1,x2∈[3,5]且x1查看更多