天利套之安徽省中考数学试题及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

天利套之安徽省中考数学试题及答案

‎2017年安徽省初中学业水平考试 数 学 ‎(试题卷)‎ 注意事项:‎ ‎ 1.你拿到的试卷满分为150分,考试时间为120分钟.‎ ‎2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.‎ ‎3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.‎ ‎4.考试结束后,请将“试题卷”和“答题卷”一并交回.‎ 一、 选择题(本大题共10小题,每小题4分,满分40分)‎ ‎1.的相反数是 A. B. C. D.‎ ‎2.计算的结果是 A. B. C. D.‎ ‎3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是 第3题图 A. B. C. D.‎ ‎4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 A. B. C. D.‎ A. B. C. D. ‎ ‎5.不等式的解集在数轴上表示为 ( )‎ 第6题图 ‎6.直角三角板和直尺如图放置,若,则的度数为 A. B. ‎ C. D.‎ 第7题图 ‎7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A. B.‎ C. D.‎ ‎8.一种药品原价每盒元,经过两次降价后每盒元.设两次降价的百分率都为,则  满足 A. B. C. D.‎ ‎9.已知抛物线与反比例函数的图象在第一象限有一个公共点,其横坐标为.则一次函数的图象可能是 A. B. C. D. ‎ ‎ ‎ ‎10.如图,矩形中,.动点满足.则点到两点距离之和 的最小值为( )‎ A. B. C. D. ‎ 一、 填空题(本大题共4小题,每小题5分,满分20分)‎ ‎11.的立方根是____________ .‎ ‎12.因式分解:____________ .‎ ‎13.如图,已知等边的边长为6,以为直径的⊙与边分别交于两点,则劣弧的的长为____________ . ‎ ‎14.在三角形纸片中,,将该纸片沿过点的直线折叠,使点落在斜边上的一点处,折痕记为(如图1),剪去后得到双层(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm.‎ 二、 ‎(本大题共2小题,每小题8分,共16分)‎ ‎15.计算:. ‎ ‎16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:‎ 今有人共买物,人出八,盈三;人出七,不足四。问人数。物价各几何?‎ 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元。问共有多少人?这个物品的价格是多少?‎ 请解答上述问题.‎ 三、 ‎(本大题共2小题,每小题8分,共16分)‎ 第17题图 ‎17.如图,游客在点处坐缆车出发,沿的路线可至山顶处.假设和都是直线段,且,,求的长.‎ ‎(参考数据: )‎ 第18题图 ‎ ‎ ‎18.如图,在边长为1个长度单位的小正方形组成的网格中,给出了格点和(顶点为风格线的交点),以及过格点的直线. ‎ ‎(1)将向右平 移两个单位长度,再向下平移两个长 度单位,画出平移后的三角形;‎ ‎(2)现出关于直线对称的三角形;‎ ‎(3)填空:___________. ‎ 一、 ‎(本大题共2小题,每小题10分,共20分)‎ ‎19.【阅读理解】‎ 第19题图1‎ 我们知道,,那么结果等于多少呢?‎ 在图1所示三角形数阵中,第1行圆圈中的数为1,即;第2行两个圆圈中数的和为,即;……;第行个圆圈中数的和为,即.这样,该三角形数阵中共有个圆圈,所有圆圈中的数的和为.‎ ‎【规律探究】‎ 将三角形数阵型经过两次旋转可得如图所示的三角形数阵型,观察这三个三角形数阵各行同一位置圆圈中的数,(如第行的第1个圆圈中的数分别为),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为: .因此 .‎ 第19题图2‎ 第20题图 ‎20.如图,在四边形中,,不平行于,过点作∥交的外接圆于点,连接.‎ ‎ (1)求证:四边形为平行四边形;‎ ‎(2)连接,求证:平分.‎ 一、 ‎(本题满分12分)‎ ‎21.甲,乙,丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:‎ ‎ 甲:9,10,8,5,7,8,10,8,8,7;‎ ‎ 乙:5,7,8,7,8,9,7,9,10,10;‎ ‎ 丙:7,6,8,5,4,7,6,3,9,5.‎ ‎ (1)根据以上数据完成下表:‎ 平均数 中位数 方差 甲 ‎8‎ ‎8‎ ‎ ‎ 乙 ‎8‎ ‎8‎ ‎2.2‎ 丙 ‎6‎ ‎ ‎ ‎3‎ ‎ (2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;‎ ‎ (3)比赛时三人依次出场,顺序由抽签方式决定,求甲,乙相邻出场的概率.‎ ‎ ‎ 二、 ‎(本题满分12分)‎ ‎22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表:‎ 售价(元/千克)‎ ‎50‎ ‎60‎ ‎70‎ 销售量(千克)‎ ‎100‎ ‎80‎ ‎60‎ ‎ (1)求与之间的函数表达式;‎ ‎ (2)设商品每天的总利润为(元),求与之间的函数表达式(利润=收入-成本);‎ ‎(3)试说明中总利润随售价的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?‎ 一、 ‎(本题满分14分)‎ ‎23.已知正方形,点为边的中点. ‎ ‎ (1)如图1,点为线段上的一点,且,延长分别与边交于点. ‎ ‎ ① 证明:‎ ‎② 求证:.‎ ‎ (2)如图2,在边上取一点,满足,连接交于点,连接并延长交于点,求的值.‎ 第23题图1 第23题图2 ‎ ‎ ‎ ‎1-5.BABCC 6-10 .CADBD ‎11.3 12.‎ ‎13【答案】‎ ‎【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.‎ ‎14.【答案】或.(沿如图的虚线剪.)‎ ‎【考查目的】考查对称,解直角三角形,空间想象,较难题.‎ 一、 ‎(本大题共2小题,每小题8分,共16分)‎ ‎15.‎ ‎【解答】原式=‎ ‎16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:‎ ‎【解答】设共有人,价格为元,依题意得:‎ ‎ ‎ ‎ 解得 ‎ 答:共有7个人,物品价格为53元。‎ 二、 ‎(本大题共2小题,每小题8分,共16分)‎ 第17题图 ‎17.‎ ‎【解答】如图,‎ 第18题图 答:的长约为579m.‎ ‎18‎ ‎【解答】(1)(2)如图,‎ ‎(3)如小图,在三角形和中, ‎ ‎∴∽‎ ‎∴‎ ‎ ‎ 三、 ‎(本大题共2小题,每小题10分,共20分)‎ ‎19.‎ ‎.因此.‎ 第19题图2‎ ‎【解决问题】‎ 根据以上发现,计算的结果为.‎ ‎【考查目的】考查规律探求、归纳推理、问题解决能力,中等题.‎ ‎【解答】‎ 第20题图 ‎20.如图,在四边形中,,不平行于,过点作∥交的外接圆于点,连接.‎ ‎ (1)求证:四边形为平行四边形;‎ ‎(2)连接,求证:平分.‎ ‎【考查目的】考查平行四边形的判定,圆的性质,角平分线,中等题.‎ ‎【解答】‎ 一、 ‎(本题满分12分)‎ ‎21.‎ ‎【解答】(2)因为运动员甲的方差最小,故甲的成绩最稳定;‎ ‎(3)出场顺序有如下6种:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,其中甲乙相邻出场的有:甲乙丙,乙甲丙,丙甲乙,丙乙甲四种,‎ 故所求概率为.‎ 二、 ‎(本题满分12分)‎ ‎22.‎ ‎【解答】(1)由题意得: ‎ ‎ ∴‎ ‎(2)‎ ‎ ‎ ‎(3)由(2)可知,当时,利润逐渐增大,当时,利润逐渐减小,当时利润最大,为1800元.‎ 三、 ‎(本题满分14分)‎ ‎23.‎ 第23题图1 第23题图2 ‎ ‎【考查目的】‎ ‎【解答】‎ ‎(1)① 由条件知 ‎ ∴‎ ‎② ‎ 又为等腰三角形, ‎ ‎∴‎ 得到为等腰三角形,从而 ‎∴‎ ‎(2)延长交于点,则有 ‎ ,,‎ ‎ 由 ‎ 由,又 ‎ 得到……………………(*)‎ ‎ 由,由 ‎ 得到……(**)‎ ‎ 由(*),(**)得 ‎ 从而;‎ ‎ 设,则,‎ ‎ 由 ‎ ∴‎
查看更多

相关文章

您可能关注的文档