- 2021-05-10 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
山东省菏泽市中考数学试卷
2016年山东省菏泽市中考数学试卷 一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置) 1.(3分)(2016•菏泽)下列各对数是互为倒数的是( ) A.4和﹣4 B.﹣3和 C.﹣2和 D.0和0 2.(3分)(2016•菏泽)以下微信图标不是轴对称图形的是( ) A. B. C. D. 3.(3分)(2016•菏泽)如图所示,该几何体的俯视图是( ) A. B. C. D. 4.(3分)(2016•菏泽)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是( ) A.﹣1 B.1 C.3 D.﹣3 5.(3分)(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( ) A.2 B.3 C.4 D.5 6.(3分)(2016•菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( ) ①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD. A.①②③ B.①②④ C.②③④ D.①③④ 7.(3分)(2016•菏泽)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为( ) A.25:9 B.5:3 C.: D.5:3 8.(3分)(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( ) A.36 B.12 C.6 D.3 二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内) 9.(3分)(2016•菏泽)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为______. 10.(3分)(2016•菏泽)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是______. 11.(3分)(2016•菏泽)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是______岁. 12.(3分)(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=______. 13.(3分)(2016•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=______. 14.(3分)(2016•菏泽)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2 旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=______. 三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内) 15.(6分)(2016•菏泽)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0. 16.(6分)(2016•菏泽)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值. 17.(6分)(2016•菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离. 18.(6分)(2016•菏泽)列方程或方程组解应用题: 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计) 19.(7分)(2016•菏泽)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG. (1)求证:四边形DEFG是平行四边形; (2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度. 20.(7分)(2016•菏泽)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a). (1)求a,m的值; (2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标. 21.(10分)(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F. (1)求证:PC是⊙O的切线; (2)若PC=3,PF=1,求AB的长. 22.(10分)(2016•菏泽)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项). (1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是______. (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是______. (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率. 23.(10分)(2016•菏泽)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50° ①求证:AD=BE; ②求∠AEB的度数. (2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN. 24.(10分)(2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点. (1)试求抛物线的解析式; (2)记抛物线顶点为D,求△BCD的面积; (3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围. 2016年山东省菏泽市中考数学试卷 参考答案与试题解析 一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置) 1.(3分)(2016•菏泽)下列各对数是互为倒数的是( ) A.4和﹣4 B.﹣3和 C.﹣2和 D.0和0 【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可. 【解答】解:A、4×(﹣4)≠1,选项错误; B、﹣3×≠1,选项错误; C、﹣2×(﹣)=1,选项正确; D、0×0≠1,选项错误. 故选C. 2.(3分)(2016•菏泽)以下微信图标不是轴对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称. 【解答】解:A、是轴对称图形; B、是轴对称图形; C、是轴对称图形; D、不是轴对称图形. 故选D. 3.(3分)(2016•菏泽)如图所示,该几何体的俯视图是( ) A. B. C. D. 【分析】根据俯视图是从物体的上面看得到的视图进行解答即可. 【解答】解:从上往下看,可以看到选项C所示的图形. 故选:C. 4.(3分)(2016•菏泽)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是( ) A.﹣1 B.1 C.3 D.﹣3 【分析】根据a的取值范围,先去绝对值符号,再计算求值. 【解答】解:当1<a<2时, |a﹣2|+|1﹣a|=2﹣a+a﹣1=1. 故选:B. 5.(3分)(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( ) A.2 B.3 C.4 D.5 【分析】直接利用平移中点的变化规律求解即可. 【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位, 由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位, 由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位, 所以点A、B均按此规律平移, 由此可得a=0+1=1,b=0+1=1, 故a+b=2. 故选:A. 6.(3分)(2016•菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( ) ①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD. A.①②③ B.①②④ C.②③④ D.①③④ 【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论. 【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形, ∴∠A=∠B=∠C=∠D=90°,AC=BD, ∴AC==5, ①正确,②正确,④正确;③不正确; 故选:B. 7.(3分)(2016•菏泽)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为( ) A.25:9 B.5:3 C.: D.5:3 【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论. 【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′, ∵△ABC与△A′B′C′都是等腰三角形, ∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′, ∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′, ∵∠B+∠B′=90°, ∴sinB=cosB′,sinB′=cosB, ∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB, S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′, ∴S△BAC:S△A′B′C′=25:9. 故选A. 8.(3分)(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( ) A.36 B.12 C.6 D.3 【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 【解答】解:设△OAC和△BAD的直角边长分别为a、b, 则点B的坐标为(a+b,a﹣b). ∵点B在反比例函数y=的第一象限图象上, ∴(a+b)×(a﹣b)=a2﹣b2=6. ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3. 故选D. 二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内) 9.(3分)(2016•菏泽)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107 . 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7. 【解答】解:45100000这个数用科学记数法表示为4.51×107. 故答案为:4.51×107. 10.(3分)(2016•菏泽)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是 15° . 【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°. 【解答】解:如图,过A点作AB∥a, ∴∠1=∠2, ∵a∥b, ∴AB∥b, ∴∠3=∠4=30°, 而∠2+∠3=45°, ∴∠2=15°, ∴∠1=15°. 故答案为15°. 11.(3分)(2016•菏泽)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 15 岁. 【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案. 【解答】解:∵该班有40名同学, ∴这个班同学年龄的中位数是第20和21个数的平均数, ∵15岁的有21人, ∴这个班同学年龄的中位数是15岁; 故答案为:15. 12.(3分)(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6 . 【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决. 【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根, ∴m2﹣2m﹣3=0, ∴m2﹣2m=3, ∴2m2﹣4m=6, 故答案为:6. 13.(3分)(2016•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC= . 【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解. 【解答】解:作EF⊥BC于F,如图,设DE=CE=a, ∵△CDE为等腰直角三角形, ∴CD=CE=a,∠DCE=45°, ∵四边形ABCD为正方形, ∴CB=CD=a,∠BCD=90°, ∴∠ECF=45°, ∴△CEF为等腰直角三角形, ∴CF=EF=CE=a, 在Rt△BEF中,tan∠EBF===, 即tan∠EBC=. 故答案为. 14.(3分)(2016•菏泽)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= ﹣1 . 【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果. 【解答】解:∵y=﹣x(x﹣2)(0≤x≤2), ∴配方可得y=﹣(x﹣1)2+1(0≤x≤2), ∴顶点坐标为(1,1), ∴A1坐标为(2,0) ∵C2由C1旋转得到, ∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0); 照此类推可得,C3顶点坐标为(5,1),A3(6,0); C4顶点坐标为(7,﹣1),A4(8,0); C5顶点坐标为(9,1),A5(10,0); C6顶点坐标为(11,﹣1),A6(12,0); ∴m=﹣1. 故答案为:﹣1. 三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内) 15.(6分)(2016•菏泽)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0. 【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果. 【解答】解:原式=﹣2×+2+1 =+2. 16.(6分)(2016•菏泽)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值. 【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可. 【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 =x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2 =﹣4xy+3y2 =﹣y(4x﹣3y). ∵4x=3y, ∴原式=0. 17.(6分)(2016•菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离. 【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案. 【解答】解:如图,作AD⊥BC,垂足为D, 由题意得,∠ACD=45°,∠ABD=30°. 设CD=x,在Rt△ACD中,可得AD=x, 在Rt△ABD中,可得BD=x, 又∵BC=20(1+),CD+BD=BC, 即x+x=20(1+), 解得:x=20, ∴AC=x=20(海里). 答:A、C之间的距离为20海里. 18.(6分)(2016•菏泽)列方程或方程组解应用题: 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计) 【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可. 【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克, 根据题意,得:=2×, 解得:x=3.2, 经检验:x=3.2是原分式方程的解,且符合题意, 答:A4薄型纸每页的质量为3.2克. 19.(7分)(2016•菏泽)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG. (1)求证:四边形DEFG是平行四边形; (2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度. 【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 【解答】解:(1)∵D、G分别是AB、AC的中点, ∴DG∥BC,DG=BC, ∵E、F分别是OB、OC的中点, ∴EF∥BC,EF=BC, ∴DG=EF,DG∥EF, ∴四边形DEFG是平行四边形; (2)∵∠OBC和∠OCB互余, ∴∠OBC+∠OCB=90°, ∴∠BOC=90°, ∵M为EF的中点,OM=3, ∴EF=2OM=6. 由(1)有四边形DEFG是平行四边形, ∴DG=EF=6. 20.(7分)(2016•菏泽)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a). (1)求a,m的值; (2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标. 【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值; (2)解方程组,即可解答. 【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上, ∴a=﹣2×(﹣1)+2=4, ∴点A的坐标是(﹣1,4),代入反比例函数y=, ∴m=﹣4. (2)解方程组 解得:或, ∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2). 21.(10分)(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F. (1)求证:PC是⊙O的切线; (2)若PC=3,PF=1,求AB的长. 【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可. (2)延长PO交圆于G点,由切割线定理求出PG即可解决问题. 【解答】解:(1)如图,连接OC, ∵PD⊥AB, ∴∠ADE=90°, ∵∠ECP=∠AED, 又∵∠EAD=∠ACO, ∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°, ∴PC⊥OC, ∴PC是⊙O切线. (2)延长PO交圆于G点, ∵PF×PG=PC2,PC=3,PF=1, ∴PG=9, ∴FG=9﹣1=8, ∴AB=FG=8. 22.(10分)(2016•菏泽)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项). (1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是 . (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是 . (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率. 【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果; (2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果; (3)用树状图得出共有6种等可能的结果,锐锐顺利通关的只有1种情况,即可得出结果. 【解答】解:(1)第一道肯定能对,第二道对的概率为, 所以锐锐通关的概率为; 故答案为:; (2)锐锐两次“求助”都在第二道题中使用, 则第一道题对的概率为,第二道题对的概率为, 所以锐锐能通关的概率为×=; 故答案为:; (3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项, 树状图如图所示: 共有6种等可能的结果,锐锐顺利通关的只有1种情况, ∴锐锐顺利通关的概率为:. 23.(10分)(2016•菏泽)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50° ①求证:AD=BE; ②求∠AEB的度数. (2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN. 【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE; ②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数; (2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论. 【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°, ∴∠ACB=∠DCE=180°﹣2×50°=80°. ∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE, ∴∠ACD=∠BCE. ∵△ACB和△DCE均为等腰三角形, ∴AC=BC,DC=EC. 在△ACD和△BCE中,有, ∴△ACD≌△BCE(SAS), ∴AD=BE. ②解:∵△ACD≌△BCE, ∴∠ADC=∠BEC. ∵点A,D,E在同一直线上,且∠CDE=50°, ∴∠ADC=180°﹣∠CDE=130°, ∴∠BEC=130°. ∵∠BEC=∠CED+∠AEB,且∠CED=50°, ∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°. (2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°, ∴∠CDM=∠CEM=×(180°﹣120°)=30°. ∵CM⊥DE, ∴∠CMD=90°,DM=EM. 在Rt△CMD中,∠CMD=90°,∠CDM=30°, ∴DE=2DM=2×=2CM. ∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB, ∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°, ∴∠BEN=180°﹣120°=60°. 在Rt△BNE中,∠BNE=90°,∠BEN=60°, ∴BE==BN. ∵AD=BE,AE=AD+DE, ∴AE=BE+DE=BN+2CM. 24.(10分)(2016•菏泽)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点. (1)试求抛物线的解析式; (2)记抛物线顶点为D,求△BCD的面积; (3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围. 【分析】(1)根据待定系数法即可解决问题. (2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题. (3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题. 【解答】解:(1)由题意解得, ∴抛物线解析式为y=x2﹣x+2. (2)∵y=x2﹣x+2=(x﹣1)2+. ∴顶点坐标(1,), ∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3), ∴S△BDC=S△BDH+S△DHC=•3+•1=3. (3)由消去y得到x2﹣x+4﹣2b=0, 当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0, ∴b=, 当直线y=﹣x+b经过点C时,b=3, 当直线y=﹣x+b经过点B时,b=5, ∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点, ∴<b≤3. 参与本试卷答题和审题的老师有:HJJ;王学峰;1286697702;马兴田;wdxwzk;Linaliu;wdzyzmsy@126.com;曹先生;gsls;lantin;zgm666;唐唐来了;sks;73zzx;三界无我;星月相随;sdwdmahongye;弯弯的小河(排名不分先后) 菁优网 2016年9月21日查看更多