- 2021-05-10 发布 |
- 37.5 KB |
- 66页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师大版七上第3章整式及其加减测试卷(共3套含解析)
《第三章 整式及其加减》章末测试卷1 一、单选题 1.(3分)(2018•齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是( ) A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额 B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长 C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力 D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数 2.(3分)(2018•大庆)某商品打七折后价格为a元,则原价为( ) A.a元 B.a元 C.30%a元 D.a元 3.(3分)(2018•荆州)下列代数式中,整式为( ) A.x+1 B. C. D. 4.(2018•包头)如果2xa+1y与x2yb﹣1是同类项,那么的值是( ) A. B. C.1 D.3 5.(3分)计算2m2n﹣3m2n的结果为( ) A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2 6.(3分)古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+28 7.(3分)已知整式的值为6,则2x2﹣5x+6的值为( ) A.9 B.12 C.18 D.24 8.(3分)将正偶数按下表排成5列: 根据上面的排列规律,则2000应在( ) A.第125行,第1列 B.第125行,第2列 C.第250行,第1列 D.第250行,第2列 9.(3分)请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是( ) A.58 B.70 C.84 D.126 10.(3分)(2018•随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( ) A.33 B.301 C.386 D.571 二、填空题 11.(3分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33 和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”, 则63“分裂”出的奇数中,最大的奇数是 . 12.(3分)若a2+a=0,则2a2+2a+2019= . 13.(3分)如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= . 14.(3分)已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是 . 15.(3分)观察下列各式: (x﹣1)(x+1)=x2﹣1 (x﹣1)(x2+x+1)=x3﹣1 (x﹣1)(x3+x2+x+1)=x4﹣1, 根据前面各式的规律可得(x﹣1)(xn+xn﹣1+…+x+1)= (其中n为正整数). 16.(3分)在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 个. 17.(3分)对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为 . 18.(3分)若x2﹣3x+1=0,则的值为 . 19.(3分)有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片 张. 20.(3分)若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A73= (直接写出计算结果),并比较A103 A104(填“>”或“<”或“=”) 三、解答题 21.研究下列算式,你会发现有什么规律? ①13=12 ②13+23=32 ③13+23+33=62 ④13+23+33+43=102 ⑤13+23+33+43+53=152… (1)根据以上算式的规律,请你写出第⑥个算式; (2)用含n(n为正整数)的式子表示第n个算式; (3)请用上述规律计算:73+83+93+…+203. 22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣ 层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=. 如果图1中的圆圈共有12层, (1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ; (2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和. 23.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m. (1)按图示规律,第一图案的长度L1= 0.9 ;第二个图案的长度L2= 1.5 ; (2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系; (2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数. 24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元. (1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多? (2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元) 25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2) 其中x=2,y=1. 26.有足够多的长方形和正方形卡片,如下图: (1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义. 这个长方形的代数意义是 . (2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片 张,3号卡片 张. 27.(5分)化简,求值: ①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)] ②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣,b=2时,﹣B+2A的值. 28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元. (1)试用含a的代数式填空: ①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元; ③涨价后,商场的台灯平均每月的销售量为 台. (2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由. 29.(1)拼一拼,画一画: 请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形. (2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么? (3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长. 30.下图的数阵是由全体奇数排成: (1)图中平行四边形框内的九个数之和与中间的数有什么关系? (2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由; (3)这九个数之和能等于1998吗?2019,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由. 参考答案 一、单选题 1.(3分)(2018•齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是( ) A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额 B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长 C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力 D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数 【考点】31:代数式. 【专题】1:常规题型;512:整式. 【分析】分别判断每个选项即可得. 【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确; B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确; C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确; D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误; 故选:D. 【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系. 2.(3分)(2018•大庆)某商品打七折后价格为a元,则原价为( ) A.a元 B.a元 C.30%a元 D.a元 【考点】32:列代数式. 【专题】1:常规题型. 【分析】直接利用打折的意义表示出价格进而得出答案. 【解答】解:设该商品原价为:x元, ∵某商品打七折后价格为a元, ∴原价为:0.7x=a, 则xa(元). 故选:B. 【点评】此题主要考查了列代数式,正确表示出打折后价格是解题关键. 3.(3分)(2018•荆州)下列代数式中,整式为( ) A.x+1 B. C. D. 【考点】41:整式. 【专题】1:常规题型. 【分析】直接利用整式、分式、二次根式的定义分析得出答案. 【解答】解:A、x+1是整式,故此选项正确; B、,是分式,故此选项错误; C、是二次根式,故此选项错误; D、,是分式,故此选项错误; 故选:A. 【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键. 4.(2018•包头)如果2xa+1y与x2yb﹣1是同类项,那么的值是( ) A. B. C.1 D.3 【考点】34:同类项. 【专题】11:计算题. 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值. 【解答】解:∵2xa+1y与x2yb﹣1是同类项, ∴a+1=2,b﹣1=1, 解得a=1,b=2. ∴. 故选:A. 【点评】此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键. 5.(3分)计算2m2n﹣3m2n的结果为( ) A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2 【考点】合并同类项. 【专题】计算题. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变计算即可. 【解答】解:2m2n﹣3m2n=(2﹣3)m2n=﹣m2n. 故选C. 【点评】本题考查了合并同类项的法则,解题时牢记法则是关键,此题比较简单,易于掌握. 6.(3分)古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A.20=6+14 B.25=9+16 C.36=16+20 D.49=21+28 【考点】规律型:数字的变化类. 【专题】压轴题;规律型. 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为 n(n+1)和 (n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值. 【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2, 两个三角形数分别表示为 n(n+1)和 (n+1)(n+2), 只有D、49=21+28符合, 故选D. 【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 7.(3分)已知整式的值为6,则2x2﹣5x+6的值为( ) A.9 B.12 C.18 D.24 【考点】代数式求值. 【专题】压轴题;整体思想. 【分析】观察题中的两个代数式,可以发现,2x2﹣5x=2(),因此可整体求出式的值,然后整体代入即可求出所求的结果. 【解答】解:∵=6 ∴2x2﹣5x+6=2()+6 =2×6+6=18,故选C. 【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值. 8.(3分)将正偶数按下表排成5列: 根据上面的排列规律,则2000应在( ) A.第125行,第1列 B.第125行,第2列 C.第250行,第1列 D.第250行,第2列 【考点】规律型:数字的变化类. 【分析】根据题意得到每一行是4个偶数,奇数行从第2列往后排,偶数行从第4列往前排,然后用2000除以2得到2000是第1000个偶数,再用1000÷4得250,于是可判断2000在第几行第几列. 【解答】解:因为2000÷2=1000, 所以2000是第1000个偶数, 而1000÷4=250, 第1000个偶数是250行最大的一个, 偶数行的数从第4列开始向前面排, 所以第1000个偶数在第1列, 所以2000应在第250行第一列. 答:在第250行第1列. 故选:C. 【点评】本题考查了关于数字的变化规律:先要观察各行各列的数字的特点,得出数字排列的规律,然后确定所给数字的位置. 9.(3分)请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是( ) A.58 B.70 C.84 D.126 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】第一行有1个数,第二行有2个数,那么第9行就有9个数,偶数行中间的两个数是相等的.第九行正中间的数应是第九行的第5个数.应该=第8行第4个数+第8行第5个数=2×第8行第4个数=2×(第7行第3个数+第7行第4个数)=2×[(第6行第2个数+第6行第3个数)+(第6行第3个数+第6行第4个数)]=2×(第6行第2个数+2第6行第3个数+第6行第4个数)=2×[5+2×(第5行第2个数+第5行第3个数)+(第5行第3个数+第5行第4个数)]=2×[5+2×(4+6)+6+4]=70. 【解答】解:2×[5+2×(4+6)+6+4]=70. 故选B. 【点评】杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和. 10.(3分)(2018•随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( ) A.33 B.301 C.386 D.571 【考点】37:规律型:数字的变化类. 【专题】2A:规律型;51:数与式. 【分析】由图形知第n个三角形数为1+2+3+…+n,第n个正方形数为 n2,据此得出最大的三角形数和正方形数即可得. 【解答】解:由图形知第n个三角形数为1+2+3+…+n,第n个正方形数为n2, 当n=19时,190<200,当n=20时,210>200, 所以最大的三角形数m=190; 当n=14时,n2=196<200,当n=15时,n2=225>200, 所以最大的正方形数n=196, 则m+n=386, 故选:C. 【点评】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n,第n个正方形数为n2. 二、填空题 11.(3分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”, 则63“分裂”出的奇数中,最大的奇数是 41 . 【考点】规律型:数字的变化类. 【专题】压轴题;规律型. 【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决. 【解答】解:由23=3+5,分裂中的第一个数是:3=2×1+1, 33=7+9+11,分裂中的第一个数是:7=3×2+1, 43=13+15+17+19,分裂中的第一个数是:13=4×3+1, 53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1, 63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1, 所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41. 故答案为:41. 【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口. 12.(3分)若a2+a=0,则2a2+2a+2019= 2019 . 【考点】代数式求值. 【专题】计算题. 【分析】把代数式化为2(a2+a)+2019,把a2+a=0代入求出即可. 【解答】解:∵a2+a=0, ∴2a2+2a+2019 =2(a2+a)+2019 =2×0+2019 =2019. 【点评】本题考查了求代数式的值的应用,注意:把a2+a当作一个整体进行代入,题目比较典型,难度也不大. 13.(3分)如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= 9 ,d= 37 . 【考点】规律型:数字的变化类. 【专题】压轴题;图表型. 【分析】观察发现:第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=+1.所以当a=8时,则c=9,d=9×4+1=37. 【解答】解:当a=8时,c=9,d=9×4+1=37. 【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律. 14.(3分)已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是 ﹣5 . 【考点】相反数;代数式求值. 【专题】整体思想. 【分析】根据相反数的意义得出a+1﹣2b=0,求出a﹣2b的值,变形后代入即可. 【解答】解:∵a与l﹣2b互为相反数, ∴a+1﹣2b=0, ∴a﹣2b=﹣1, ∴2a﹣4b﹣3=2(a﹣2b)﹣3=2×(﹣1)﹣3=﹣5. 故答案为:﹣5. 【点评】本题考查了相反数的意义和代数式求值的应用,根据相反数的意义求出a+2b的值,把a+2b当作一个整体,即整体思想的应用. 15.(3分)观察下列各式: (x﹣1)(x+1)=x2﹣1 (x﹣1)(x2+x+1)=x3﹣1 (x﹣1)(x3+x2+x+1)=x4﹣1, 根据前面各式的规律可得(x﹣1)(xn+xn﹣1+…+x+1)= xn+1﹣1 (其中n为正整数). 【考点】平方差公式. 【专题】压轴题;规律型. 【分析】观察其右边的结果:第一个是x2﹣1;第二个是x3﹣1;…依此类推,则第n个的结果即可求得. 【解答】解:(x﹣1)(xn+xn﹣1+…x+1)=xn+1﹣1. 故答案为:xn+1﹣1. 【点评】本题考查了平方差公式,发现规律:右边x的指数正好比前边x的最高指数大1是解题的关键. 16.(3分)在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 3 个. 【考点】完全平方数. 【专题】创新题型. 【分析】首先将符合条件的整数分解成两整数的和与这两整数的差的积,再由整数的奇偶性,判断这个符合条件的整数,是奇数或是能被4整除的数,从而找出符合条件的整数的个数.在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的有2个,所以不能表示成两个平方数差的数有10﹣5﹣2=3个. 【解答】解:对x=n2﹣m2=(n+m)(n﹣m),(m<n,m,n为整数) 因为n+m与n﹣m同奇同偶,所以x是奇数或是4的倍数, 在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的数有2个, 所以能表示成两个平方数差的数有5+2=7个, 则不能表示成两个平方数差的数有10﹣7=3个. 故答案为:3. 【点评】本题考查了平方差公式的实际运用,使学生体会到平方差公式在判断数的性质方面的作用. 17.(3分)对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为 891134 . 【考点】数的十进制. 【专题】数字问题;新定义. 【分析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数. 【解答】解:对于任意一个数位数字(0﹣9),经加密后对应的数字是唯一的. 规律如下: 例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2; 同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0; ∴如果加密后的数为473392,那么原数是891134, 故答案为891134. 【点评】考查新定义后数字的规律;得到加密数字与原数字的对应规律是解决本题的关键. 18.(3分)若x2﹣3x+1=0,则的值为 . 【考点】分式的化简求值. 【专题】压轴题. 【分析】将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式. 【解答】解:由已知x2﹣3x+1=0变换得x2=3x﹣1 将x2=3x﹣1代入====== 故答案为. 【点评】解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活 19.(3分)有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片 7 张. 【考点】多项式乘多项式. 【分析】计算出长为(3a+b),宽为(a+2b)的大长方形的面积,再分别得出A、B、C卡片的面积,即可看出应当需要各类卡片多少张. 【解答】解:长为(3a+b),宽为(a+2b)的大长方形的面积为:(3a+b)(a+2b)=3a2+2b2+7ab; A卡片的面积为:a×a=a2; B卡片的面积为:b×b=b2; C卡片的面积为:a×b=ab; 因此可知,拼成一个长为(3a+b),宽为(a+2b)的大长方形, 需要3块A卡片,2块B卡片和7块C卡片. 故答案为:7. 【点评】本题考查了多项式乘法,此题的立意较新颖,注意对此类问题的深入理解. 20.(3分)若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A73= 210 (直接写出计算结果),并比较A103 < A104(填“>”或“<”或“=”) 【考点】规律型:数字的变化类. 【专题】压轴题;规律型. 【分析】对于Aab(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可. 【解答】解:A73=7×6×5=210; ∵A103=10×9×8=720,A104=10×9×8×7=5040. ∴A103<A104. 故答案为:210;<. 【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到Aab(b <a)中的最大因数,最小因数. 三、解答题 21.研究下列算式,你会发现有什么规律? ①13=12 ②13+23=32 ③13+23+33=62 ④13+23+33+43=102 ⑤13+23+33+43+53=152… (1)根据以上算式的规律,请你写出第⑥个算式; (2)用含n(n为正整数)的式子表示第n个算式; (3)请用上述规律计算:73+83+93+…+203. 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】(1)利用类比的方法得到第⑥个算式为 13+23+33+43+53+63=212; (2)同样利用类比的方法得到第n个算式为 ; (3)将73+83+93+…+203转化为(13+23+33+43+…+203)﹣(13+23+33+43+53+63)后代入总结的规律求解即可. 【解答】解:(1)第⑥个算式为13+23+33+43+53+63=212; (2)第n个算式为; (3)73+83+93+…+203 =(13+23+33+43+…+203)﹣(13+23+33+43+53+63) = =44100﹣441=43659. 【点评】 本题考查了数字的变化类问题,仔细观察每个算式得到本题的通项公式是解决此题的关键. 22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=. 如果图1中的圆圈共有12层, (1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ; (2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和. 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1; (2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数. 【解答】解:(1)1+2+3+…+11+1=6×11+1=67; (2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数, 所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+54=(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761. 另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字. 【点评】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=. 23.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m. (1)按图示规律,第一图案的长度L1= 0.9 ;第二个图案的长度L2= 1.5 ; (2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系; (2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数. 【考点】规律型:图形的变化类. 【专题】计算题. 【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n个图案有花纹的地面砖有n块;第一个图案边长3×0.3=L,第二个图案边长5×0.3=L, (2)由(1)得出则第n个图案边长为L=(2n+1)×0.3; (3)根据(2)中的代数式,把L为30.3m代入求出n的值即可. 【解答】解:(1)第一图案的长度L1=0.3×3=0.9,第二个图案的长度L2=0.3×5=1.5; 故答案为:0.9,1.5; (2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,… 故第n个图案中有花纹的地面砖有n块; 第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n个图案边长为L= (2n+1)×0.3; (3)把L=30.3代入L=(2n+1)×0.3中得: 30.3=(2n+1)×0.3, 解得:n=50, 答:需要50个有花纹的图案. 【点评】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题. 24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元. (1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多? (2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元) 【考点】列代数式;有理数的混合运算. 【专题】应用题. 【分析】(1)根据两企业的利润方案计算即可; (2)归纳总结,根据题意列出两企业上缴利润的总金额即可. 【解答】解:(1)根据题意得:企业A,4年上缴的利润总金额为1.5+(1.5+1)+(1.5+2)+(1.5+3)=12(万元); 企业B,4年上缴的利润总金额为0.3+(0.3+0.3)+(0.3+0.6)+(0.3+0.9)+(0.3+1.2)+(0.3+1.5)+(0.3+1.8)+(0.3+2.1)=2.4+8.4=10.8(万元), ∵12>10.8, ∴企业A上缴利润的总金额多; (2)根据题意得: 企业A,n年上缴的利润总金额为1.5n+(1+2+…+n﹣1) =1.5n+=1.5n+=(万元); 企业B,n年上缴的利润总金额为0.6n+[0.3+0.6+…+0.3(2n﹣1)] =0.6n+=0.6n+0.3n(2n﹣1)=0.6n2+0.3n(万元). 【点评】此题考查了有理数加法运算的应用,属于规律型试题,弄清题意是解本题的关键. 25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2) 其中x=2,y=1. 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值. 【解答】解:原式=6x2﹣4xy+8y2﹣6x2+3xy﹣6y2=﹣xy+2y2, 当x=2,y=1时,原式=﹣2+2=0. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 26.有足够多的长方形和正方形卡片,如下图: (1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义. 这个长方形的代数意义是 a2+3ab+2b2=(a+b)(a+2b) . (2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片 3 张,3号卡片 7 张. 【考点】整式的混合运算. 【专题】计算题. 【分析】(1)先根据题意画出图形,然后求出长方形的长和宽,长为a+2b,宽为a+b,从而求出长方形的面积; (2)先求出1号、2号、3号图形的面积,然后由(a+3b)(2a+b)=2a2+7ab+3b2得出答案. 【解答】解:(1) 或 a2+3ab+2b2=(a+b)(a+2b), 故答案为a2+3ab+2b2=(a+b)(a+2b); (2)1号正方形的面积为a2,2号正方形的面积为b2,3号长方形的面积为ab, 所以需用2号卡片3张,3号卡片7张, 故答案为:3;7. 【点评】本题主要考查了整式的混合运算,用到的知识点有长方形的面积公式和正方形的面积公式. 27.(5分)化简,求值: ①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)] ②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣,b=2时,﹣ B+2A的值. 【考点】整式的加减—化简求值;合并同类项;去括号与添括号. 【专题】计算题. 【分析】①先去括号,然后合并同类二次根式将整式化为最简; ②此题需要先去括号,再合并同类项,将原整式化简,然后再将a,b的值代入求解即可. 【解答】解:①原式=3x2﹣6xy﹣3x2+2y+6xy+2y =4y; ②﹣B+2A=﹣(2ab﹣3b2+4a2)+2(3a2+b2﹣5ab) =﹣2ab+3b2﹣4a2+6a2+2b2﹣10ab =2a2+5b2﹣12ab; 当a=﹣,b=2时, ﹣B+2A=2×+5×22﹣12×(﹣)×2 =+20+12 =. 【点评】本题考查整式的化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材. 28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元. (1)试用含a的代数式填空: ①涨价后,每个台灯的销售价为 40+a 元; ②涨价后,每个台灯的利润为 10+a 元; ③涨价后,商场的台灯平均每月的销售量为 600﹣10a 台. (2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“ 在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由. 【考点】列代数式;代数式求值. 【分析】(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可; (2)根据平均每月能售出600个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可. 【解答】解:(1)①涨价后,每个台灯的销售价为40+a(元); ②涨价后,每个台灯的利润为40+a﹣30=10+a(元); ③涨价后,商场的台灯平均每月的销售量为(600﹣10a)台; 故答案为:40+a,10+a,600﹣10a. (2)甲与乙的说法均正确,理由如下: 依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a); 当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元); 当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元); 故经理甲与乙的说法均正确. 【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的关系,列出代数式,求出代数式的解. 29.(1)拼一拼,画一画: 请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形. (2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么? (3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长. 【考点】作图—代数计算作图. 【分析】(1)动手操作可发现外面大正方形的边长为a+b;里面小正方形的边长为(a﹣b); (2)同样小正方形的面积可以用大正方形的面积为(a+b)2减去四个小正方形的面积4ab;小正方形的面积也可以用边长的平方计算为(a﹣b) 平方,这两个面积应相等. (3)关系式为:大正方形的面积﹣小正方形的面积=24. 【解答】解: (1)(2分) (2)(a﹣b)2=(a+b)2﹣4ab.(2分) (3)设小正方形的边长为x,(x+3)2﹣x2=24, 解得x=.(3分) 【点评】本题用图象法验证两个完全平方公式之间的关系. 30.下图的数阵是由全体奇数排成: (1)图中平行四边形框内的九个数之和与中间的数有什么关系? (2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由; (3)这九个数之和能等于1998吗?2019,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由. 【考点】规律型:数字的变化类. 【专题】压轴题;规律型. 【分析】(1)应算出平行四边形框内的九个数之和,进而判断与中间的数的关系; (2)任意作一类似(1)中的平行四边形框,仿照(1)的算法,进行简单判断;然后设最框中间的数为未知数,左右相邻的两个数相差2,上下相邻的两个数相差18,得到这9个数的和. (3)看所给的数能否被9整除,不能被9整除的,排除;能被9整除的,结果为偶数的,排除.最小的数为中间的数﹣16﹣2. 【解答】解:(1)平行四边形框内的九个数之和是中间的数的9倍; (2)任意作一类似(1)中的平行四边形框,规律仍然成立. 不仿设框中间的数为n,这九个数按大小顺序依次为: (n﹣18),(n﹣16),(n﹣14),(n﹣2),n,(n+2),(n+14),(n+16),(n+18). 显然,其和为9n; (3)这九个数之和不能为1998: 若和为1998,则9n=1998,n=222,是偶数, 显然不在数阵中. 这九个数之和也不能为2005: 因为2019不能被9整除; 若和为1017,则中间数可能为113,最小的数为113﹣16﹣2=95. 【点评】本题为规律探究题,通过数表,寻找数字间的规律并运用这一规律解决问题. 《第三章 整式及其加减》章末测试卷2 一、选择题(共12小题) 1.如果整式xn﹣2﹣5x+2是关于x的三次三项式,那么n等于( ) A.3 B.4 C.5 D.6 2.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是( ) A.2a﹣3 B.2a+3 C.2(a﹣3) D.2(a+3) 3.下列说法中,正确的是( ) A.﹣x2的系数是 B.πa2的系数是 C.3ab2的系数是3a D.xy2的系数是 4.观察下列关于x的单项式,探究其规律: x,3x2,5x3,7x4,9x5,11x6,… 按照上述规律,第2019个单项式是( ) A.2019x2019 B.4027x2019 C.4037x2019 D.4047x2019 5.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A.﹣2xy2 B.3x2 C.2xy3 D.2x3 6.如图,淇淇和嘉嘉做数学游戏: 假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=( ) A.2 B.3 C.6 D.x+3 7.计算﹣3(x﹣2y)+4(x﹣2y)的结果是( ) A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y 8.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长( ) A.102cm B.104cm C.106cm D.108cm 9.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( ) A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b 10.多项式2a2b﹣ab2﹣ab的项数及次数分别是( ) A.3,3 B.3,2 C.2,3 D.2,2 二、填空题(共17小题) 11.单项式7a3b2的次数是 . 12.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7 个单项式为 . 13.一组按照规律排列的式子:,…,其中第8个式子是 ,第n个式子是 .(n为正整数) 14.计算:3(2x+1)﹣6x= . 15.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2= . 16.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2019个单项式是 . 17.观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):an= . 18.已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2019位上的数字为 . 19.已知 … 依据上述规律 计算的结果为 (写成一个分数的形式) 20.有这样一组数据a1,a2,a3,…an,满足以下规律:,(n≥2且n为正整数),则a2019的值为 (结果用数字表示). 21.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为 . 22.下面是按一定规律排列的一列数:,,,,…那么第n个数是 . 23.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第n个单项式为 . 三、解答题(共1小题) 24.先化简,再求值:2x+7+3x﹣2,其中x=2. 参考答案 一、选择题(共12小题) 1.如果整式xn﹣2﹣5x+2是关于x的三次三项式,那么n等于( ) A.3 B.4 C.5 D.6 【考点】多项式. 【专题】计算题. 【分析】根据题意得到n﹣2=3,即可求出n的值. 【解答】解:由题意得:n﹣2=3, 解得:n=5. 故选:C 【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键. 2.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是( ) A.2a﹣3 B.2a+3 C.2(a﹣3) D.2(a+3) 【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论. 【解答】解:a的2倍就是:2a, a的2倍与3的和就是:2a与3的和,可表示为:2a+3. 故选:B. 【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序是解答的关键. 3.下列说法中,正确的是( ) A.﹣x2的系数是 B.πa2的系数是 C.3ab2的系数是3a D.xy2的系数是 【考点】单项式. 【分析】根据单项式的概念求解. 【解答】解:A、﹣x2的系数是﹣,故A错误; B、πa2的系数是π,故B错误; C、3ab2的系数是3,故C错误; D、xy2的系数,故D正确. 故选:D. 【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数. 4.观察下列关于x的单项式,探究其规律: x,3x2,5x3,7x4,9x5,11x6,… 按照上述规律,第2019个单项式是( ) A.2019x2019 B.4027x2019 C.4037x2019 D.4047x2019 【考点】单项式. 【专题】规律型. 【分析】系数的规律:第n个对应的系数是2n﹣1. 指数的规律:第n个对应的指数是n. 【解答】解:根据分析的规律,得 第2019个单项式是4037x2019. 故选:C. 【点评】此题考查单项式问题,分别找出单项式的系数和次数的规律是解决此类问题的关键. 5.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A.﹣2xy2 B.3x2 C.2xy3 D.2x3 【考点】单项式. 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母. A、﹣2xy2系数是﹣2,错误; B、3x2系数是3,错误; C、2xy3次数是4,错误; D、2x3符合系数是2,次数是3,正确; 故选D. 【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义. 6.如图,淇淇和嘉嘉做数学游戏: 假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=( ) A.2 B.3 C.6 D.x+3 【考点】整式的加减. 【专题】图表型. 【分析】先用抽到牌的点数x乘以2再加上6,然后再除以2,最后减去x,列出式子,再根据整式的加减运算法则进行计算即可. 【解答】解:根据题意得: (x×2+6)÷2﹣x=x+3﹣x=3; 故选B. 【点评】此题考查了整式的加减,解题的关键是根据题意列出式子,再根据整式加减的运算法则进行计算. 7.计算﹣3(x﹣2y)+4(x﹣2y)的结果是( ) A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y 【考点】整式的加减. 【专题】计算题. 【分析】原式去括号合并即可得到结果. 【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y, 故选:A. 【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 8.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长( ) A.102cm B.104cm C.106cm D.108cm 【考点】整式的加减;圆的认识. 【分析】根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案. 【解答】解:设地球半径为:rcm, 则地球的周长为:2πrcm, 假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm, 故此时钢丝围成的圆形的周长变为:2π(r+16)cm, ∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm). 故选:A. 【点评】此题主要考查了圆的周长公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键. 9.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( ) A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b 【考点】整式的加减;列代数式. 【专题】几何图形问题. 【分析】根据题意列出关系式,去括号合并即可得到结果. 【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b. 故选B 【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键. 10.多项式2a2b﹣ab2﹣ab的项数及次数分别是( ) A.3,3 B.3,2 C.2,3 D.2,2 【考点】多项式. 【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定. 【解答】解:2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3. 故选:A. 【点评】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数. 二、填空题(共17小题) 11.单项式7a3b2的次数是 5 . 【考点】单项式. 【分析】根据单项式次数的定义来求解,单项式中所有字母的指数和叫做这个单项式的次数. 【解答】解:单项式7a3b2的次数是5,故答案为:5. 【点评】本题考查单项式的次数,较为容易.根据单项式次数的定义来求解,要记清所有字母的指数和叫做这个单项式的次数. 12.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为 ﹣13x8 . 【考点】单项式. 【专题】规律型. 【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可. 【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13, x的指数为8, 所以,第7个单项式为﹣13x8. 故答案为:﹣13x8. 【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解. 13.一组按照规律排列的式子:,…,其中第8个式子是 ,第n个式子是 .(n为正整数) 【考点】单项式. 【专题】规律型. 【分析】根据分子的底数都是x,而指数是从1开始的奇数;分母是底数从1开始的自然数的平方. 【解答】解:,…,其因此第8个式子是,第n个式子是. 故答案为,. 【点评】本题考查了单项式,解题的关键是根据分子和分母分别寻找规律:分子的底数都是x,而指数是从1开始的奇数;分母是底数从1开始的自然数的平方. 14.计算:3(2x+1)﹣6x= 3 . 【考点】整式的加减. 【专题】计算题. 【分析】原式去括号合并即可得到结果. 【解答】解:原式=6x+3﹣6x =3. 故答案为:3. 【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键. 15.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2= ﹣9 . 【考点】整式的加减. 【专题】几何图形问题. 【分析】先求出正方形的面积,再根据扇形的面积公式求出以A为圆心,2为半径作圆弧、以D为圆心,3为半径作圆弧的两扇形面积,再求出其差即可. 【解答】解:∵S正方形=3×3=9, S扇形ADC==, S扇形EAF==π, ∴S1﹣S2=S扇形EAF﹣(S正方形﹣S扇形ADC)=π﹣(9﹣)=﹣9. 故答案为:﹣9. 【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键. 16.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2019个单项式是 4037x2 . 【考点】单项式. 【专题】压轴题;规律型. 【分析】先看系数的变化规律,然后看x的指数的变化规律,从而确定第2019个单项式. 【解答】解:系数依次为1,3,5,7,9,11,…2n﹣1; x的指数依次是1,2,2,1,2,2,1,2,2,可见三个单项式一个循环, 故可得第2019个单项式的系数为4037; ∵2019/3=673, ∴第2019个单项式指数为2, 故可得第2019个单项式是4037x2. 故答案为:4037x2. 【点评】本题考查了单项式的知识,属于规律型题目,解答本题关键是观察系数及指数的变化规律. 17.观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):an= ﹣ . 【考点】规律型:数字的变化类. 【专题】压轴题. 【分析】根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故an=﹣ . 【解答】解:通过分析数据可知第n个等式为:an=﹣. 故答案为:﹣. 【点评】本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案. 18.已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2019位上的数字为 9 . 【考点】规律型:数字的变化类. 【专题】压轴题. 【分析】根据已知得出第2019个数字是第610个3位数的第3位,进而得出即可. 【解答】解:∵共有9个1位数,90个2位数,900个3位数 ∴2019﹣9﹣90*2=1830, ∴1830/3=610. ∵此610是继99后的第610个数, ∴此数是709,第三位是9。 故从左往右数第2019位上的数字为9.故答案为:9. 【点评】此题主要考查了数字变化规律,根据已知得出变化规律是解题关键. 19.已知 … 依据上述规律 计算的结果为 (写成一个分数的形式) 【考点】规律型:数字的变化类. 【专题】压轴题. 【分析】根据已知得出原式=×[(1﹣)+(﹣)+(﹣)+…+(﹣)]进而求出即可. 【解答】解:∵ … ∴ =×[(1﹣)+(﹣)+(﹣)+…+(﹣)] =×(1﹣) =. 【点评】此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键. 20.有这样一组数据a1,a2,a3,…an,满足以下规律:,(n≥2且n为正整数),则a2019的值为 ﹣1 (结果用数字表示). 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2019除以3,根据商和余数的情况确定答案即可. 【解答】解:a1=, a2==2, a3==﹣1, a4==, …, 依此类推,每三个数为一个循环组依次循环, ∵2019÷3=673, ∴a2019为第673循环组的最后一个数,与a3相同,为﹣1. 故答案为:﹣1. 【点评】本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键. 21.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为 82+92+722=732 . 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的数的平方,然后写出即可. 【解答】解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…, ∴第8个等式为:82+92+(8×9)2=(8×9+1)2, 即82+92+722=732. 故答案为:82+92+722=732. 【点评】本题是对数字变化规律的考查,仔细观察底数的关系是解题的关键,也是本题的难点. 22.下面是按一定规律排列的一列数:,,,,…那么第n个数是 . 【考点】规律型:数字的变化类. 【专题】压轴题;规律型. 【分析】观察不难发现,分子是连续的奇数,分母减去3都是平方数,根据此规律写出第n个数的表达式即可. 【解答】解:∵分子分别为1、3、5、7,…, ∴第n个数的分子是2n﹣1, ∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…, ∴第n个数的分母为n2+3, ∴第n个数是. 故答案为:. 【点评】本题是对数字变化规律的考查,从分子与分母两个方面考虑求解是解题的关键. 23.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第n个单项式为 (﹣2)n﹣1xn . 【考点】单项式. 【专题】压轴题;规律型. 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为正,数字变化规律是2n﹣1,字母变化规律是xn. 【解答】解:由题意可知第n个单项式是(﹣2)n﹣1xn. 故答案为:(﹣2)n﹣1xn. 【点评】本题考查找规律,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 三、解答题(共1小题) 24.先化简,再求值:2x+7+3x﹣2,其中x=2. 【考点】整式的加减—化简求值. 【分析】先将原式合并同类项,然后代入求值即可. 【解答】解:原式=5x+5, 当x=2时,原式=5×2+5=15. 【点评】 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点. 《第三章 整式及其加减》章末测试卷3 一、选择题 1.(2018•武汉)计算3x2﹣x2的结果是( ) A.2 B.2x2 C.2x D.4x2 2.(2018•贵阳)当x=﹣1时,代数式3x+1的值是( ) A.﹣1 B.﹣2 C.4 D.﹣4 3.(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( ) A.m﹣2 B.m+2 C. D.2m 4.(2018•淄博)若单项式am﹣1b2与的和仍是单项式,则nm的值是( ) A.3 B.6 C.8 D.9 5.下列计算中,正确的是( ) A.2a+3b=5ab B.(3a3)2=6a6 C.a6÷a2=a3 D.﹣3a+2a=﹣a 6.(2018•河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( ) A.4cm B.8cm C.(a+4)cm D.(a+8)cm 7.(2018•重庆)按如图所示的运算程序,能使输出的结果为12的是( ) A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 8.化简﹣16(x﹣0.5)的结果是( ) A.﹣16x﹣0.5 B.﹣16x+0.5 C.16x﹣8 D.﹣16x+8 9.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A.9999 B.10000 C.10001 D.10002 10.(2018•宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为( ) A.a=1,b=6,c=15 B.a=6,b=15,c=20 C.a=15,b=20,c=15 D.a=20,b=15,c=6 二、填空题 11.(2018•株洲)单项式5mn2的次数 . 12.(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为 . 13.(2018•荆州)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是 . 14.a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2018= . 15.(2018•德阳)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为 . 3 a b c ﹣1 2 …… 16.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y.若1*(﹣1)=2,则(﹣2)*2的值是 . 17.(2018•荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2,a3,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018= . 18.(2018•淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 . 19.(2018•枣庄)将从1开始的连续自然数按以下规律排列: 第1行 1 第2行 2 3 4 第3行 9 8 7 6 5 第4行 10 11 12 13 14 15 16 第5行 25 24 23 22 21 20 19 18 17 … 则2018在第 行. 20.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= . 三、解答题(共1小题) 21.(2018•河北)嘉淇准备完成题目:发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几? 22.(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m或n的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积. 23.(2018•安徽)观察以下等式: 第1个等式:1, 第2个等式:1, 第3个等式:1, 第4个等式:1, 第5个等式:1, …… 按照以上规律,解决下列问题: (1)写出第6个等式: ; (2)写出你猜想的第n个等式: (用含n 的等式表示),并证明. 参考答案 一、选择题 1.(2018•武汉)计算3x2﹣x2的结果是( ) A.2 B.2x2 C.2x D.4x2 【分析】根据合并同类项解答即可. 【解答】解:3x2﹣x2=2x2, 故选:B. 【点评】此题考查合并同类项,关键是根据合并同类项的法则解答. 2.(2018•贵阳)当x=﹣1时,代数式3x+1的值是( ) A.﹣1 B.﹣2 C.4 D.﹣4 【分析】把x的值代入解答即可. 【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2, 故选:B. 【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 3.(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( ) A.m﹣2 B.m+2 C. D.2m 【考点】32:列代数式. 【专题】1:常规题型. 【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱. 【解答】解:∵苹果每千克m元, ∴2千克苹果2m元, 故选:D. 【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式. 4.(2018•淄博)若单项式am﹣1b2与的和仍是单项式,则nm的值是( ) A.3 B.6 C.8 D.9 【考点】合并同类项;单项式. 【分析】首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可. 【解答】解:∵单项式am﹣1b2与的和仍是单项式, ∴单项式am﹣1b2与是同类项, ∴m﹣1=2,n=2, ∴m=3,n=2, ∴nm=8. 故选:C. 【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同. 5.下列计算中,正确的是( ) A.2a+3b=5ab B.(3a3)2=6a6 C.a6÷a2=a3 D.﹣3a+2a=﹣a 【考点】合并同类项;幂的乘方与积的乘方. 【专题】计算题. 【分析】根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解. 【解答】解:A、不是同类二次根式,不能加减,故A选项错误; B、(3a3)2=9a6≠6a6,故B选项错误; C、a6÷a2=a4,故C选项错误; D、﹣3a+2a=﹣a,故D选项正确. 故选:D. 【点评】本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键. 6.(2018•河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( ) A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【解答】解:∵原正方形的周长为acm, ∴原正方形的边长为cm, ∵将它按图的方式向外等距扩1cm, ∴新正方形的边长为(2)cm, 则新正方形的周长为4(2)=a+8(cm), 因此需要增加的长度为a+8﹣A=8cm. 故选:B. 【点评】本题主要考查列代数式,解题的关键是根据题意表示出新正方形的边长及代数式的书写规范. 7.(2018•重庆)按如图所示的运算程序,能使输出的结果为12的是( ) A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 【分析】根据运算程序,结合输出结果确定的值即可. 【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意; B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意; C、x=2、y=4时,输出结果为22+2×4=12,符合题意; D、x=4、y=2时,输出结果为42+2×2=20,不符合题意; 故选:C. 【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键. 8.化简﹣16(x﹣0.5)的结果是( ) A.﹣16x﹣0.5 B.﹣16x+0.5 C.16x﹣8 D.﹣16x+8 【考点】去括号与添括号. 【分析】根据去括号的法则计算即可. 【解答】解:﹣16(x﹣0.5)=﹣16x+8, 故选:D. 【点评】此题考查去括号,关键是根据括号外是负号,去括号时应该变号. 9.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( ) A.9999 B.10000 C.10001 D.10002 【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可. 【解答】解:∵第奇数个数2=12+1, 10=32+1, 26=52+1, …, 第偶数个数3=22﹣1, 15=42﹣1, 25=62﹣1, …, ∴第100个数是1002﹣1=9999, 故选:A. 【点评】 本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键. 10.(2018•宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为( ) A.a=1,b=6,c=15 B.a=6,b=15,c=20 C.a=15,b=20,c=15 D.a=20,b=15,c=6 【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值. 【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和, ∴a=1+5=6,b=5=10=15,c=10+10=20, 故选:B. 【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题 11.(2018•株洲)单项式5mn2的次数 3 . 【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数. 【解答】解:单项式5mn2的次数是:1+2=3. 故答案是:3. 【点评】考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数. 12.(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为 5 . 【分析】利用整体思想代入计算即可; 【解答】解:∵a2+2a=1, ∴3(a2+2a)+2=3×1+2=5, 故答案为5. 【点评】本题考查代数式求值,解题的关键是学会用整体代入的思想解决问题,属于基础题. 13.(2018•荆州)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是 5 . 【分析】根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论. 【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是1,…, ∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数), ∴第2018次输出的结果是5. 故答案为:5. 【点评】本题考查了代数式求值以及规律型中数字的变化类,根据输出结果的变化找出变化规律是解题的关键. 14.a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2018= ﹣ . 【考点】规律型:数字的变化类;倒数. 【专题】压轴题;规律型. 【分析】根据差倒数定义表示出各项,归纳总结即可得到结果. 【解答】解:a1=3,a2是a1的差倒数,即a2==﹣,a3是a2的差倒数,即 a3==,a4是a3差倒数,即a4=3, …依此类推, ∵2018÷3=672…2, ∴a2018=﹣. 故答案为:﹣. 【点评】此题考查了规律型:数字的变化类,以及新定义,找出题中的规律是解本题的关键. 15.(2018•德阳)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为 ﹣1 . 3 a b c ﹣1 2 …… 【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解. 【解答】解:∵任意三个相邻格子中所填整数之和都相等, ∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c, ∴a=﹣1,c=3, ∴数据从左到右依次为3、﹣1、b、3、﹣1、b, ∵第9个数与第3个数相同,即b=2, ∴每3个数“3、﹣1、2”为一个循环组依次循环, ∵2018÷3=672…2, ∴第2018个格子中的整数与第2个格子中的数相同,为﹣1. 故答案为:﹣1. 【点评】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键. 16.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y.若 1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 . 【分析】根据新定义的运算法则即可求出答案. 【解答】解:∵1*(﹣1)=2, ∴2 即a﹣b=2 ∴原式(a﹣b)=﹣1 故答案为:﹣1 【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型. 17.(2018•荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2,a3,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018= 63 . 【分析】由1+2+3+…+n结合2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2363263,此题得解. 【解答】解:∵1+2+3+…+n,2=2018, ∴前2018个数里面包含:1个1,2个,3个,…,63个,2个, ∴S2018=1×1+236321+1+…+163. 故答案为:63. 【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键. 18.(2018•淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是 2018 . 【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018; 【解答】解:观察图表可知:第n行第一个数是n2, ∴第45行第一个数是2025, ∴第45行、第8列的数是2025﹣7=2018, 故答案为2018. 【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题. 19.(2018•枣庄)将从1开始的连续自然数按以下规律排列: 第1行 1 第2行 2 3 4 第3行 9 8 7 6 5 第4行 10 11 12 13 14 15 16 第5行 25 24 23 22 21 20 19 18 17 … 则2018在第 45 行. 【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可. 【解答】解:∵442=1936,452=2025, ∴2018在第45行. 故答案为:45. 【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题. 20.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 . 【考点】规律型:数字的变化类. 【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解. 【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和, 可得6+4=a,6+3=c,ac+1=b, 可得:a=10,c=9,b=91, 所以a+b+c=10+9+91=110, 故答案为:110 【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键. 三、解答题(共1小题) 21.(2018•河北)嘉淇准备完成题目:发现系数“” 印刷不清楚. (1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几? 【分析】(1)原式去括号、合并同类项即可得; (2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值. 【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2) =3x2+6x+8﹣6x﹣5x2﹣2 =﹣2x2+6; (2)设“”是a, 则原式=(ax2+6x+8)﹣(6x+5x2+2) =ax2+6x+8﹣6x﹣5x2﹣2 =(a﹣5)x2+6, ∵标准答案的结果是常数, ∴a﹣5=0, 解得:a=5. 【点评】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则. 22.(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m或n的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积. 【分析】(1)根据题意和矩形的性质列出代数式解答即可. (2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可. 【解答】解:(1)矩形的长为:m﹣n, 矩形的宽为:m+n, 矩形的周长为:4m; (2)矩形的面积为(m+n)(m﹣n), 把m=7,n=4代入(m+n)(m﹣n)=11×3=33. 【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答. 23.(2018•安徽)观察以下等式: 第1个等式:1, 第2个等式:1, 第3个等式:1, 第4个等式:1, 第5个等式:1, …… 按照以上规律,解决下列问题: (1)写出第6个等式: ; (2)写出你猜想的第n个等式: (用含n的等式表示),并证明. 【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1 【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5 故应填: (2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1 故应填: 证明: ∴等式成立 【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.查看更多