- 2021-05-10 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教A版绝对值不等式学案
第4节 绝对值不等式 最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a. 知 识 梳 理 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 不等式 a>0 a=0 a<0 |x|a (-∞,-a)∪(a,+∞) (-∞,0)∪(0,+∞) R (2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立; (2)|a|-|b|≤|a±b|≤|a|+|b|; (3)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. [常用结论与微点提醒] 1.绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法. 2.不等式恒成立问题、存在性问题都可以转化为最值问题解决. 3.可以利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.( ) (2)不等式|x-1|+|x+2|<2的解集为∅.( ) (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.( ) (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.( ) (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( ) 答案 (1)× (2)√ (3)× (4)× (5)√ 2.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( ) A.5或8 B.-1或5 C.-1或-4 D.-4或8 解析 分类讨论: 当a≤2时,f(x)= 显然,x=-时,f(x)min=+1-a=3,∴a=-4, 当a>2时,f(x)= 显然x=-时,f(x)min=--1+a=3,∴a=8. 答案 D 3.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________. 解析 ∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6. ∵不等式的解集为{x|1≤x≤3},∴k=2. 答案 2 4.不等式|x-1|-|x-5|<2的解集为________. 解析 ①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当1查看更多