2010年高考试题—数学理(辽宁)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2010年高考试题—数学理(辽宁)

‎2010年普通高等学校招生全国统一考试(辽宁卷)‎ 数学(供理科考生使用)‎ 第I卷 一、选择墨:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 ‎ 是符合题目要求的,‎ (1) 已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(B ∩A={9},则A=‎ ‎(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}‎ ‎(2)设a,b为实数,若复数,则 ‎(A) (B) ‎ ‎(C) (D) ‎ ‎(3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是 ‎ 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 ‎(A) (B) (C) (D)‎ ‎(4)如果执行右面的程序框图,输入正整数n,m,‎ ‎ 满足n≥m,那么输出的P等于 ‎(A) ‎ ‎(B) ‎ ‎(C) ‎ ‎(D) ‎ ‎(5)设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是 ‎(A) (B) (C) (D)3 ‎ ‎(6)设{an}是有正数组成的等比数列,为其前n项和。已知a‎2a4=1, ,则 ‎(A) (B) (C) (D) ‎ ‎(7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如 ‎ 果直线AF的斜率为,那么|PF|=‎ ‎ (A) (B)8 (C) (D) 16‎ ‎(8)平面上O,A,B三点不共线,设,则△OAB的面积等于 ‎ (A) (B) ‎ ‎(C) (D) ‎ ‎(9)设双曲线的—个焦点为F;虚轴的—个端点为B,如果直线FB与该双曲线的一条渐 ‎ 近线垂直,那么此双曲线的离心率为 ‎ (A) (B) (C) (D) ‎ ‎(1O)已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值 ‎ 范围是 ‎ (A)[0,) (B) (D) ‎ ‎(11)已知a>0,则x0满足关于x的方程ax=6的充要条件是 ‎ (A) (B) ‎ ‎(C) (D) ‎ ‎(12) (12)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是 ‎ (A)(0,) (B)(1,)‎ ‎ (C) (,) (D) (0,)‎ 二、填空题:本大题共4小题,每小题5分。‎ ‎(13)的展开式中的常数项为_________.‎ ‎(14)已知且,则的取值范围是_______(答案用区间表示)‎ ‎(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.‎ ‎(16)已知数列满足则的最小值为__________.‎ 三、解答题:解答应写出文字说明,证明过程或演算步骤。‎ ‎(17)(本小题满分12分)‎ ‎ 在△ABC中,a, b, c分别为内角A, B, C的对边,且 ‎ (Ⅰ)求A的大小;‎ ‎(Ⅱ)求的最大值.‎ ‎(18)(本小题满分12分)‎ ‎ 为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。‎ ‎ (Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;‎ ‎(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)‎ 表1:注射药物A后皮肤疱疹面积的频数分布表 ‎(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;‎ ‎(ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.‎ 表3: ‎ ‎(19)(本小题满分12分)‎ 已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.‎ ‎(Ⅰ)证明:CM⊥SN;‎ ‎(Ⅱ)求SN与平面CMN所成角的大小.‎ ‎(20)(本小题满分12分)‎ 设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.‎ (I) 求椭圆C的离心率;‎ (II) 如果|AB|=,求椭圆C的方程.‎ ‎(21)(本小题满分12分)‎ 已知函数 ‎(I)讨论函数的单调性;‎ ‎(II)设.如果对任意,,求的取值范围。‎ 请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所作的第一题记分。作答时用2B铅笔在答题卡上吧所选题目对应题号下方的方框涂黑。‎ ‎(22)(本小题满分10分)选修4-1:几何证明选讲 如图,的角平分线AD的延长线交它的外接圆于点E ‎(I)证明:‎ ‎(II)若的面积,求的大小。‎ ‎(23)(本小题满分10分)选修4-4:坐标系与参数方程 ‎ ‎ 已知P为半圆C: (为参数,)上的点,点A的坐标为(1,0),‎ ‎ ‎ O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为。‎ ‎(I)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标;‎ ‎(II)求直线AM的参数方程。‎ ‎(24)(本小题满分10分)选修4-5:不等式选讲 已知均为正数,证明:,并确定为何值时,等号成立。‎ 参考答案 一、选择题 ‎(1)D (2)A (3)B (4)D (5)C (6)B ‎(7)B (8)C (9)D (10)D (11)C (12)A 二、填空题 ‎(13)-5 (14)(3,8) (15) (16)‎ ‎(17)解:‎ ‎(Ⅰ)由已知,根据正弦定理得 即 ‎ ‎ 由余弦定理得 ‎ 故 ,A=120° ……6分 ‎(Ⅱ)由(Ⅰ)得:‎ ‎ ‎ ‎ ‎ 故当B=30°时,sinB+sinC取得最大值1。 ……12分 ‎(18)解:‎ ‎(Ⅰ)甲、乙两只家兔分在不同组的概率为 ‎ ……4分 ‎(Ⅱ)(i)‎ 图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图 可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积 的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。 ……8分 ‎(ii)表3:‎ 由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。 ……12分 ‎(19)证明:‎ 设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。‎ 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).……4分 ‎(Ⅰ),‎ 因为,‎ 所以CM⊥SN ……6分 ‎(Ⅱ),‎ 设a=(x,y,z)为平面CMN的一个法向量,‎ 则 ……9分 因为 所以SN与片面CMN所成角为45°。 ……12分 ‎(20)解:‎ 设,由题意知<0,>0.‎ ‎(Ⅰ)直线l的方程为 ,其中.‎ 联立得 解得 因为,所以.‎ 即 ‎ 得离心率 . ……6分 ‎(Ⅱ)因为,所以.‎ 由得.所以,得a=3,.‎ 椭圆C的方程为. ……12分 ‎(21)解:‎ ‎(Ⅰ)的定义域为(0,+∞). .‎ 当时,>0,故在(0,+∞)单调增加;‎ 当时,<0,故在(0,+∞)单调减少;‎ 当-1<<0时,令=0,解得.‎ 则当时,>0;时,<0.‎ 故在单调增加,在单调减少.‎ ‎(Ⅱ)不妨假设,而<-1,由(Ⅰ)知在(0,+∞)单调减少,从而 ‎ ,‎ 等价于 ‎, ①‎ 令,则 ‎①等价于在(0,+∞)单调减少,即 ‎ .‎ ‎ 从而 ‎ 故a的取值范围为(-∞,-2]. ……12分 ‎(22)证明:‎ ‎(Ⅰ)由已知条件,可得 因为是同弧上的圆周角,所以 故△ABE∽△ADC. ……5分 ‎(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.‎ 又S=AB·ACsin,且S=AD·AE,故AB·ACsin= AD·AE.‎ 则sin=1,又为三角形内角,所以=90°. ……10分 ‎(23)解:‎ ‎(Ⅰ)由已知,M点的极角为,且M点的极径等于,‎ 故点M的极坐标为(,). ……5分 ‎(Ⅱ)M点的直角坐标为(),A(0,1),故直线AM的参数方程为 ‎(t为参数) ……10分 ‎(24)证明:‎ ‎(证法一)‎ 因为a,b,c均为正数,由平均值不等式得 ‎ ①‎ 所以 ② ……6分 故.‎ 又 ③‎ 所以原不等式成立. ……8分 当且仅当a=b=c时,①式和②式等号成立。当且仅当时,③式等号成立。‎ 即当且仅当a=b=c=时,原式等号成立。 ……10分 ‎(证法二)‎ 因为a,b,c均为正数,由基本不等式得 所以 ①‎ 同理 ② ……6分 故 ‎ ③‎ 所以原不等式成立. ……8分 当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,‎ 时,③式等号成立。‎ 即当且仅当a=b=c=时,原式等号成立。 ……10分 版权所有:高考资源网(www.ks5u.com)‎ 版权所有:高考资源网(www.ks5u.com)‎
查看更多

相关文章

您可能关注的文档