2018届二轮复习函数的图象学案(全国通用)
1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;
2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.
1.描点法作图
方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.
2.图象变换
(1)平移变换
(2)对称变换
①y=f(x)y=-f(x);
②y=f(x)y=f(-x);
③y=f(x)y=-f(-x);
④y=ax (a>0且a≠1)y=logax(a>0且a≠1).
⑤y=f(x)y=|f(x)|.§科§网]
⑥y=f(x)y=f(|x|).
(3)伸缩变换
①y=f(x)
y=f(ax).
②y=f(x)
y=af(x).
高频考点一 作函数的图象
例1、作出下列函数的图象:
(1)y=;(2)y=|log2(x+1)|;[来源:学,科,网]
(3)y=; (4)y=x2-2|x|-1.
(3)∵y=2+,故函数图象可由y=图象向右平移1个单位,再向上平移2个单位即得,如图③.
(4)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.
【方法规律】画函数图象的一般方法
(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.
(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.
【变式探究】 分别画出下列函数的图象:
(1)y=|lg x|;(2)y=sin |x|.
高频考点二 识图与辨图
例2、(1)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为( )
[来源:学科网]
(2)(2015·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )
(2)当x∈时,f(x)=tan x+,图象不会是直线段,从而排除A,C.
当x∈时,f=f=1+,
f=2.∵2<1+,
∴f
0,b<0,c>0,d>0
(B)a>0,b<0,c<0,d>0
(C)a<0,b<0,c<0,d>0
(D)a>0,b>0,c>0,d<0
【答案】A
【解析】由函数的图象可知,令
又,可知是的两根[来源:Z*xx*k.Com]
由图可知
∴;故A正确.
1.为了得到函数y=2x-2的图象,可以把函数y=2x图象上所有的点( )
A.向右平行移动2个单位长度
B.向右平行移动1个单位长度
C.向左平行移动2个单位长度
D.向左平行移动1个单位长度
【答案】B
2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )
【答案】C
【解析】小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A.因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.
3.函数f(x)=cos x(-π≤x≤π且x≠0)的图象可能为( )
【答案】D
4.函数y=(x3-x)2|x|的图象大致是( )
【答案】B
【解析】由于函数y=(x3-x)2|x|为奇函数,故它的图象关于原点对称.当01时,y>0.
排除选项A,C,D,选B.
5.使log2(-x)<x+1成立的x的取值范围是( )
A.(-1,0) B.[-1,0) C.(-2,0) D.[-2,0)
【答案】A
【解析】在同一坐标系内作出y=log2(-x),y=x+1的图象,知满足条件的x∈(-1,0),故选A.
6.已知函数f(x)=则对任意x1,x2∈R,若0<|x1|<|x2|,下列不等式成立的是( )
A.f(x1)+f(x2)<0 B.f(x1)+f(x2)>0 C.f(x1)-f(x2)>0 D.f(x1)-f(x2)<0
【答案】D
【解析】函数f(x)的图象如图所示:
且f(-x)=f(x),从而函数f(x)是偶函数且在[0,+∞)上是增函数.
又0<|x1|<|x2|,
∴f(x2)>f(x1),[来源:学#科#网]
即f(x1)-f(x2)<0.
7.函数f(x)=的图象如图所示,则下列结论成立的是( )
A.a>0,b>0,c<0 B.a<0,b>0,c>0
C.a<0,b>0,c<0 D.a<0,b<0,c<0
【答案】C
8.已知函数f(x)=若对任意的x∈R,都有f(x)≤|k-1|成立,则实数k的取值范围为________.
【答案】∪
【解析】对任意x∈R,都有f(x)≤|k-1|成立,即f(x)max≤|k-1|.
因为f(x)的草图如图所示,
观察f(x)=
的图象可知,当x=时,函数f(x)max=,
所以|k-1|≥,解得k≤或k≥.
9.已知函数f(x)的图象如图所示,则函数g(x)=logf(x)的定义域是________.
【答案】(2,8]
【解析】当f(x)>0时,函数g(x)=logf(x)有意义,由函数f(x)的图象知满足f(x)>0的x∈(2,8].
10.如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,则f(x)的解析式为________.
【答案】f(x)=
11.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.
【答案】[-1,+∞)
【解析】如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).
12.已知函数f(x)=
(1)在如图所示给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间;
(3)由图象指出当x取什么值时f(x)有最值.