2021届课标版高考文科数学一轮复习学案:平面解析几何第7节双曲线

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2021届课标版高考文科数学一轮复习学案:平面解析几何第7节双曲线

第七节 双曲线 ‎[最新考纲] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合思想.4.了解双曲线的简单应用.‎ ‎1.双曲线的定义 ‎(1)平面内到两定点F1、F2的距离之差的绝对值等于常数(大于零且小于|F1F2|的点的集合叫作双曲线,定点F1,F2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.‎ ‎(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,‎ 其中a,c为常数且a>0,c>0.‎ ‎①当2a<|F1F2|时,M点的轨迹是双曲线;‎ ‎②当2a=|F1F2|时,M点的轨迹是两条射线;‎ ‎③当2a>|F1F2|时,M点不存在.‎ ‎2.双曲线的标准方程和几何性质 标准方程 -=1‎ ‎(a>0,b>0)‎ -=1‎ ‎(a>0,b>0)‎ 图形 性质 范围 x≥a或x≤-a,‎ y∈R x∈R,‎ y≤-a或y≥a 对称性 对称轴:坐标轴;对称中心:原点 顶点坐标 A1(-a,0),A2(a,0)‎ A1(0,-a),A2(0,a)‎ 渐近线 y=±x y=±x 离心率 e==∈(1,+∞)‎ 实、虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;‎ 线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;‎ a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长 a,b,c的关系 c2=a2+b2(c>a>0,c>b>0)‎ ‎3.等轴双曲线 实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=.‎ ‎1.过双曲线的一个焦点且与实轴垂直的弦的长为,也叫通径.‎ ‎2.双曲线的焦点到其渐近线的距离为b.‎ ‎3.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.‎ ‎4.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).‎ ‎5.当已知双曲线的渐近线方程为bx±ay=0,求双曲线方程时,可设双曲线方程为b2x2-a2y2=λ(λ≠0).‎ 一、思考辨析(正确的打“√”,错误的打“×”)‎ ‎(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线. (  )‎ ‎(2)方程-=1(mn>0)表示焦点在x轴上的双曲线. (  )‎ ‎(3)双曲线-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0. (  )‎ ‎(4)等轴双曲线的渐近线互相垂直,离心率等于. (  )‎ ‎[答案](1)× (2)× (3)√ (4)√‎ 二、教材改编 ‎1.双曲线-=1的焦距为(  )‎ A.5    B.    C.2    D.1‎ C [由双曲线-=1,易知c2=3+2=5,所以c=,所以双曲线-=1的焦距为2.]‎ ‎2.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线方程为(  )‎ A.x2-=1 B.-y2=1‎ C.x2-=1 D.-=1‎ A [设要求的双曲线方程为-=1(a>0,b>0),‎ 由椭圆+=1,得椭圆焦点为(±1,0),在x轴上的顶点为(±2,0).‎ 所以双曲线的顶点为(±1,0),焦点为(±2,0).‎ 所以a=1,c=2,‎ 所以b2=c2-a2=3,‎ 所以双曲线的标准方程为x2-=1.]‎ ‎3.已知双曲线-=1(a>0)的离心率为2,则a=(  )‎ A.2 B. ‎ C. D.1‎ D [依题意,e===2,∴=2a,则a2=1,a=1.]‎ ‎4.经过点A(5,-3),且对称轴都在坐标轴上的等轴双曲线方程为________.‎ -=1 [设双曲线的方程为x2-y2=λ,把点A(5,-3)代入,得λ=16,‎ 故所求方程为-=1.]‎ ‎⊙考点1 双曲线的定义及应用 ‎ 双曲线定义的两个应用 ‎(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.‎ ‎(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的关系.‎ ‎ (1)设P是双曲线-=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|等于(  )‎ A.1      B.17‎ C.1或17 D.以上均不对 ‎(2)已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,则动圆圆心M的轨迹方程为(  )‎ A.-=1(x≥) B.-=1(x≤-)‎ C.+=1(x≥) D.+=1(x≤-)‎ ‎(3)已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2‎ ‎=60°,则|PF1|·|PF2|等于(  )‎ A.2 B.4 ‎ C.6     D.8‎ ‎(1)B (2)A (3)B [(1)根据双曲线的定义得||PF1|-|PF2||=8⇒|PF2|=1或17.‎ 又|PF2|≥c-a=2,故|PF2|=17,故选B.‎ ‎(2)设动圆的半径为r,由题意可得|MC1|=r+,|MC2|=r-,所以|MC1|-|MC2|=2,故由双曲线的定义可知动点M在以C1(-4,0),C2(4,0)为焦点,实轴长为2a=2的双曲线的右支上,即a=,c=4⇒b2=16-2=14,故动圆圆心M的轨迹方程为-=1(x≥),故选A.‎ ‎(3)由双曲线的方程得a=1,c=,‎ 由双曲线的定义得||PF1|-|PF2||=2.‎ 在△PF1F2中,由余弦定理得 ‎|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°,‎ 即(2)2=|PF1|2+|PF2|2-|PF1|·|PF2|=(|PF1|-|PF2|)2+|PF1|·|PF2|=22+|PF1|·|PF2|,‎ 解得|PF1|·|PF2|=4,故选B.]‎ ‎[母题探究]‎ ‎1.本例(3)中,若将条件“∠F1PF2=60°”改为|PF1|=2|PF2|,试求cos∠F1PF2的值.‎ ‎[解] 根据双曲线的定义知,|PF1|-|PF2|=|PF2|=2,则|PF1|=2|PF2|=4,又|F1F2|=2 ‎∴cos∠F1PF2===.‎ ‎2.本例(3)中,若将条件“∠F1PF2=60°”,改为·=0,则△F1PF2的面积是多少?‎ ‎[解] 不妨设点P在双曲线的右支上.‎ 则|PF1|-|PF2|=2a=2,‎ 由·=0,得⊥.‎ 在△F1PF2中,|PF1|2+|PF2|2=|F1F2|2,‎ 即(|PF1|-|PF2|)2+2|PF1||PF2|=8,‎ ‎∴|PF1||PF2|=2.‎ ‎∴S△F1PF2=|PF1||PF2|=1.‎ ‎ (1)求双曲线上的点到焦点的距离时,要注意取舍,如本例T(1);(2)利用定义求双曲线方程时,要注意所求是双曲线一支,还是整个双曲线,如本例T(2).‎ ‎ 1.已知点F1(-3,0)和F2(3,0),动点P到F1,F2的距离之差为4,则点P的轨迹方程为(  )‎ A.-=1(y>0)    B.-=1(x>0)‎ C.-=1(y>0) D.-=1(x>0)‎ B [由题设知点P的轨迹方程是焦点在x轴上的双曲线的右支,设其方程为-=1(x>0,a>0,b>0),由题设知c=3,a=2,b2=9-4=5,所以点P的轨迹方程为-=1(x>0).]‎ ‎2.已知双曲线x2-=1的两个焦点为F1,F2,P为双曲线右支上一点.若|PF1|=|PF2|,则△F1PF2的面积为(  )‎ A.48   B.24   C.12   D.6‎ B [由双曲线的定义可得 ‎|PF1|-|PF2|=|PF2|=2a=2,‎ 解得|PF2|=6,故|PF1|=8,‎ 又|F1F2|=10,‎ 由勾股定理可知三角形PF1F2为直角三角形,因此S△F1PF2=|PF1|·|PF2|=24.]‎ ‎3.若双曲线-=1的左焦点为F,点P是双曲线右支上的动点,A(1,4),则|PF|+|PA|的最小值是(  )‎ A.8 B.9 ‎ C.10 D.12‎ B [由题意知,双曲线-=1的左焦点F的坐标为(-4,0),设双曲线的右焦点为B,则B(4,0),由双曲线的定义知|PF|+|PA|=4+|PB|+|PA|≥4+|AB|=4+=4+5=9,当且仅当A,P,B三点共线且P在A,B之间时取等号.]‎ ‎⊙考点2 双曲线的标准方程 ‎ 求双曲线方程的思路 ‎(1)如果已知双曲线的中心在原点,且确定了焦点在x轴上或y轴上,则设出相应形式的标准方程,然后根据条件确定关于a,b,c的方程组,解出a2,b2‎ ‎,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解).‎ ‎(2)当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是设双曲线的一般方程为mx2+ny2=1(mn<0)求解.‎ ‎ (1)(2019·荆门模拟)方程+=1表示双曲线的一个充分不必要条件是(  )‎ A.-3<m<0 B.-1<m<3‎ C.-3<m<4 D.-2<m<3‎ ‎(2)[一题多解]已知双曲线过点(2,3),渐近线方程为y=±x,则该双曲线的标准方程是(  )‎ A.-=1 B.-=1‎ C.x2-=1 D.-=1‎ ‎(3)(2018·天津高考)已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为(  )‎ A.-=1 B.-=1‎ C.-=1 D.-=1‎ ‎(1)B (2)C (3)C [(1)方程+=1表示双曲线,则(m+2)(m-3)<0,解得-2<m<3.∵要求充分不必要条件,∴选项范围是-2<m<3的真子集,只有选项B符合题意.故选B.‎ ‎(2)法一:当其中的一条渐近线方程y=x中的x=2时,y=2>3,又点(2,3)在第一象限,所以双曲线的焦点在x轴上,设双曲线的标准方程是-=1(a>0,b>0),由题意得解得所以该双曲线的标准方程为x2-=1,故选C.‎ 法二:因为双曲线的渐近线方程为y=±x,即=±x,所以可设双曲线的方程是x2-=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x2-=1,故选C.‎ ‎(3)如图,不妨设A在B的上方,则A,B.‎ 其中的一条渐近线为bx-ay=0,则d1+d2===2‎ b=6,∴b=3. 又由e==2,知a2+b2=4a2,∴a=.‎ ‎∴双曲线的方程为-=1. 故选C.]‎ ‎ 已知双曲线的渐近线方程,用渐近线方程设出双曲线方程,运算过程较为简单.‎ ‎[教师备选例题]‎ 设双曲线与椭圆+=1有共同的焦点,且与椭圆相交,其中一个交点的坐标为(,4),则此双曲线的标准方程是________.‎ -=1  [法一:椭圆+=1的焦点坐标是(0,±3),设双曲线方程为-=1(a>0,b>0),根据双曲线的定义知2a=|-|‎ ‎=4,故a=2.‎ 又b2=32-22=5,故所求双曲线的标准方程为-=1.‎ ‎ 法二:椭圆+=1的焦点坐标是(0,±3).设双曲线方程为-=1(a>0,b>0),则a2+b2=9, ①‎ 又点(,4)在双曲线上,所以-=1, ②‎ 联立①②解得a2=4,b2=5.故所求双曲线的标准方程为-=1.‎ ‎ 1.(2019·湘潭模拟)以双曲线-=1的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为(  )‎ A.x2-y2=1 B.-y2=1‎ C.-=1 D.-=1‎ D [由题可知,所求双曲线的顶点坐标为(±3,0).又因为双曲线的渐近线互相垂直,所以a=b=3,则该双曲线的方程为-=1.故选D.]‎ ‎2.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=4b,且双曲线的焦距为2,则该双曲线的标准方程为(  )‎ A.-y2=1 B.-=1‎ C.x2-=1 D.-=1‎ A [由题意可得 解得 则该双曲线的标准方程为-y2=1.]‎ ‎3.经过点P(3,2),Q(-6,7)的双曲线的标准方程为________.‎ -=1 [设双曲线方程为mx2+ny2=1(mn<0),‎ 因为所求双曲线经过点P(3,2),Q(-6,7),‎ 所以解得 故所求双曲线方程为-=1.]‎ ‎⊙考点3 双曲线的几何性质 ‎ 求双曲线的离心率(或其范围)‎ ‎ 求双曲线的离心率或其范围的方法 ‎(1)求a,b,c的值,由==1+直接求e.‎ ‎(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.‎ ‎ (1)(2019·全国卷Ⅱ)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为(  )‎ A. B. ‎ C.2 D. ‎(2)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线离心率的取值范围是(  )‎ A. B. C.(1,2] D. ‎(1)A (2)B [(1)令双曲线C:-=1(a>0,b>0)的右焦点F的坐标为(c,0),则c=.‎ 如图所示,由圆的对称性及条件|PQ|=|OF|可知,PQ是以OF为直径的圆的直径,且PQ⊥OF.设垂足为M,连接OP,则|OP|=a,|OM|=|MP|=,‎ 由|OM|2+|MP|2=|OP|2,‎ 得+=a2,‎ ‎∴=,即离心率e=.‎ 故选A.‎ ‎(2)由双曲线的定义可知|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以|PF2|=,由双曲线上的点到焦点的最短距离为c-a,可得≥c-a,解得≤,即e≤,又双曲线的离心率e>1,故该双曲线离心率的取值范围为,故选B.]‎ ‎ 本例T(2)利用双曲线右支上的点到右焦点的距离不小于c-a建立不等式求解,同时应注意双曲线的离心率e>1.‎ ‎[教师备选例题]‎ ‎(2019·沈阳模拟)设F1,F2分别为双曲线C:-=1(a>0,b>0)的左、右焦点,P是双曲线C上一点,若|PF1|+|PF2|=4a,且△PF1F2的最小内角的正弦值为,则双曲线C的离心率为(  )‎ A.2 B.3    ‎ C.     D. C [不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|-|PF2|=2a,|F1F2|=2c,所以|PF1|=3a,|PF2|=a.△PF1F2的最小内角的正弦值为,其余弦值为,因为|PF1|>|PF2|,|F1F2|>|PF2|,所以∠PF1F2为△PF1F2的最小内角.由余弦定理可得|PF2|2=|F1F2|2+|PF1|2-2|F1F2||PF1|cos∠PF1F2,即a2=4c2+9a2-2×2c×3a×,所以离心率e==.故选C.]‎ ‎ 与渐近线有关的问题 ‎ 与渐近线有关的结论 ‎(1)双曲线-=1(a>0,b>0)的渐近线方程为y=±x,双曲线-=1(a>0,b ‎>0)的渐近线方程为y=±x.‎ ‎(2)e2=1+⇒=e2-1⇒=.‎ ‎ (1)(2019·武汉模拟)已知双曲线C:-=1(m>0,n>0)的离心率与椭圆+=1的离心率互为倒数,则双曲线C的渐近线方程为(  )‎ A.4x±3y=0‎ B.3x±4y=0‎ C.4x±3y=0或3x±4y=0‎ D.4x±5y=0或5x±4y=0‎ ‎(2)(2019·张掖模拟)已知双曲线C:-=1(a>0,b>0)的顶点到其一条渐近线的距离为1,焦点到其一条渐近线的距离为,则其一条渐近线的倾斜角为(  )‎ A.30° B.45° ‎ C.60° D.120°‎ ‎(1)A (2)B [(1)由题意知,椭圆中a=5,b=4,∴椭圆的离心率e==,∴双曲线的离心率为=,∴=,∴双曲线的渐近线方程为y=±x=±x,即4x±3y=0.故选A.‎ ‎(2)设双曲线-=1的右顶点A(a,0),右焦点F2(c,0)到渐近线y=x的距离分别为1和,则有即=.‎ 则==-1=2-1=1,即=1.‎ 设渐近线y=x的倾斜角为θ,则tan θ==1.‎ 所以θ=45°,故选B.]‎ ‎ 双曲线中,焦点到一条渐近线的距离等于b是常用的结论.‎ ‎[教师备选例题]‎ ‎ (2019·衡水模拟)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作圆x2+y2=a2的切线,交双曲线右支于点M.若∠F1MF2=45°,则双曲线的渐近线方程为(  )‎ A.y=±x B.y=±x C.y=±x D.y=±2x A [如图,作OA⊥F1M于点A,F2B⊥F1M于点B.因为F1M与圆x2+y2=a2相切,∠F1MF2=45°,所以|OA|=a,|F2B|=|BM|=2a,|F2M|=2a,|F1B|=2b.又点M在双曲线上,所以|F1M|-|F2M|=2a+2b-2a=2a,整理得b=a.所以=.所以双曲线的渐近线方程为y=±x.故选A.]‎ ‎ 1.已知双曲线-=1(m>0)的一个焦点在直线x+y=5上,则双曲线的渐近线方程为(  )‎ A.y=±x B.y=±x C.y=±x D.y=±x B [由双曲线-=1(m>0)的焦点在y轴上,且在直线x+y=5上,直线x+y=5与y轴的交点为(0,5),‎ 有c=5,则m+9=25,得m=16,‎ 所以双曲线的方程为-=1,‎ 故双曲线的渐近线方程为y=±x.故选B.]‎ ‎2.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,点A(2,)在双曲线C上,若AF2⊥F1F2,则双曲线C的渐近线方程为(  )‎ A.y=±x B.y=±x C.y=±2x D.y=±x A [因为AF2⊥F1F2,A(2,),所以F1(-2,0),F2(2,0),由双曲线的定义可知2a=|AF1|-|AF2|=-=2,即a=,所以b==,故双曲线C的渐近线方程为y=±x,故选A.]‎
查看更多

相关文章

您可能关注的文档