2016届高考数学(理)5年高考真题备考试题库:第8章 第7节 抛物线

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2016届高考数学(理)5年高考真题备考试题库:第8章 第7节 抛物线

‎2010~2014年高考真题备选题库 第8章 平面解析几何 第7节 抛物线 ‎1.(2014湖南,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则=________.‎ 解析:由正方形的定义可知BC=CD,结合抛物线的定义得点D为抛物线的焦点,所以|AD|=p=a,D,F,将点F的坐标代入抛物线的方程得b2=2p=a2+2ab,变形得2--1=0,解得=1+或=1-(舍去),所以=1+.‎ 答案:1+ ‎2.(2014新课标全国Ⅰ,5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=(  )‎ A. B. C.3 D.2‎ 解析:过点Q作QQ′⊥l交l于点Q′,因为=4,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.‎ 答案:C ‎3.(2014新课标全国Ⅱ,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为(  )‎ A. B. C. D. 解析:易知抛物线中p=,焦点F,直线AB的斜率k=,故直线AB的方程为y=,代入抛物线方程y2=3x,整理得x2-x+=0.设A(x1,y1),B(x2,y2),则x1+x2=.由抛物线的定义可得弦长|AB|=x1+x2+p=+=12,结合图象可得O到直线AB的距离d= ‎·sin 30°=,所以△OAB的面积S=|AB|·d=.‎ 答案:D ‎4.(2014辽宁,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(  )‎ A. B. C. D. 解析:∵A(-2,3)在抛物线y2=2px的准线上,∴-=-2,∴p=4,∴y2=8x,设直线AB的方程为x=k(y-3)-2 ①,将①与y2=8x联立,即得y2-8ky+24k+16=0 ②,则Δ=(-8k)2-4(24k+16)=0,即2k2-3k-2=0,解得k=2或k=-(舍去),将k=2代入①②解得,即B(8,8),又F(2,0),∴kBF==,故选D.‎ 答案:D ‎5.(2014山东,14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.‎ ‎(1)求C的方程;‎ ‎(2)若直线l1∥l,且l1和C有且只有一个公共点E,‎ ‎①证明直线AE过定点,并求出定点坐标;‎ ‎②△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.‎ 解:由题意知F.‎ 设D(t,0)(t>0),则FD的中点为.‎ 因为|FA|=|FD|,由抛物线的定义知3+=,‎ 解得t=3+p或t=-3(舍去).‎ 由=3,解得p=2.‎ 所以抛物线C的方程为y2=4x.‎ ‎(2)①由(1)知F(1,0),‎ 设A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),‎ 因为|FA|=|FD|,则|xD-1|=x0+1,‎ 由xD>0得xD=x0+2,故D(x0+2,0).‎ 故直线AB的斜率kAB=-.‎ 因为直线l1和直线AB平行,‎ 设直线l1的方程为y=-x+b,‎ 代入抛物线方程得y2+y-=0,‎ 由题意Δ=+=0,得b=-.‎ 设E(xE,yE),则yE=-,xE=.‎ 当y≠4时,kAE==-=,‎ 可得直线AE的方程为y-y0=(x-x0),‎ 由y=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当y=4时,直线AE的方程为x=1,过点F(1,0),所以直线AE过定点F(1,0).‎ ‎②由①知直线AE过焦点F(1,0),‎ 所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.‎ 设直线AE的方程为x=my+1,‎ 因为点A(x0,y0)在直线AE上,故m=.‎ 设B(x1,y1).直线AB的方程为y-y0=-(x-x0),‎ 由于y0≠0,可得x=-y+2+x0,‎ 代入抛物线方程得y2+y-8-4x0=0.‎ 所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.‎ 所以点B到直线AE的距离为 d===‎ ‎4.‎ 则△ABE的面积S=×4x0++2≥16,当且仅当=x0,即x0=1时等号成立.‎ 所以△ABE的面积的最小值为16.‎ ‎6.(2014陕西,13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.‎ ‎(1)求a,b的值;‎ ‎(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.‎ 解:(1)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左、右顶点.‎ 设C1的半焦距为c,由=及a2-c2=b2=1得a=2.‎ ‎∴a=2,b=1.‎ ‎(2)由(1)知,上半椭圆C1的方程为+x2=1(y≥0).‎ 易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),‎ 代入C1的方程,整理得 ‎(k2+4)x2-2k2x+k2-4=0. (*)‎ 设点P的坐标为(xP,yP),‎ ‎∵直线l过点B,∴x=1是方程(*)的一个根.‎ 由根与系数的关系,得xP=,从而yP=,‎ ‎∴点P的坐标为.‎ 同理,由 得点Q的坐标为(-k-1,-k2-2k).‎ ‎∴=(k,-4),=-k(1,k+2).‎ ‎∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,‎ ‎∵k≠0,∴k-4(k+2)=0,解得k=-.‎ 经检验,k=-符合题意,‎ 故直线l的方程为y=-(x-1).‎ ‎7.(2013新课标全国Ⅱ,5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )‎ A.y2=4x或y2=8x          B.y2=2x或y2=8x ‎ C.y2=4x或y2=16x D.y2=2x或y2=16x 解析:本题考查抛物线与圆的有关知识,意在考查考生综合运用知识的能力.‎ 由已知得抛物线的焦点F,设点A(0,2),抛物线上点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,因而y0=4,M.‎ 由|MF|=5得, =5,又p>0,解得p=2或p=8,故选C.‎ 答案: C ‎8.(2013北京,5分)若抛物线y2=2px的焦点坐标为(1,0),则p=________,准线方程为________.‎ 解析:本题主要考查抛物线的方程及其简单的几何性质,意在考查考生的运算求解能力.‎ 因为抛物线的焦点坐标为(1,0),所以=1,p=2,准线方程为x=-=-1.‎ 答案:2 x=-1‎ ‎9.(2013江西,5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p=________.‎ 解析:本题考查抛物线、双曲线的标准方程及简单的几何性质,意在考查考生的数形结合思想以及转化与化归的能力.由x2=2py(p>0)得焦点F,准线l为y=-,所以可求得抛物线的准线与双曲线-=1的交点A,B,所以|AB|= ,则|AF|=|AB|= ,所以=sin ,即=,解得p=6.‎ 答案:6‎ ‎10.(2013湖南,13分)过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.‎ ‎(1)若k1>0,k2>0,证明:·<2p2;‎ ‎(2)若点M到直线l的距离的最小值为,求抛物线E的方程.‎ 解:本小题主要考查抛物线的定义、标准方程及其几何意义,圆的方程及两圆的公共弦的求法,点到直线的距离公式,直线与圆锥曲线的位置关系,向量的数量积,基本不等式的应用,二次函数的最值的求法,考查运算求解能力和函数方程思想、转化化归思想和数形结合思想.属难题.‎ ‎(1)由题意,抛物线E的焦点为F,‎ 直线l1的方程为y=k1x+.‎ 由得x2-2pk1x-p2=0.‎ 设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,y1+y2=k1(x1+x2)+p=2pk+p.‎ 所以点M的坐标为,=(pk1,pk).‎ 同理可得点N的坐标为,=(pk2,pk).‎ 于是·=p2(k1k2+kk).‎ 由题设,k1+k2=2,k1>0,k2>0,k1≠k2,‎ 所以00,所以点M到直线l的距离 d== ‎=.‎ 故当k1=-时,d取最小值.由题设,=,解得p=8.‎ 故所求的抛物线E的方程为x2=16y.‎ ‎11.(2012山东,5分)已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为(  )‎ A.x2=y             B.x2=y C.x2=8y D.x2=16y 解析:双曲线的渐近线方程为y=±x,由于== =2,所以=,所以双曲线的渐近线方程为y=±x.抛物线的焦点坐标为(0,),所以=2,所以p=8,所以抛物线方程为x2=16y.‎ 答案:D ‎12.(2011新课标全国,5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(  )‎ A.18 B.24‎ C.36 D.48‎ 解析:设抛物线方程为y2=2px,则焦点坐标为(,0),将x=代入y2=2px可得y2=p2,|AB|=12,即2p=12,∴p=6.点P在准线上,到AB的距离为p=6,所以△PAB的面积为×6×12=36.‎ 答案:C ‎13.(2011辽宁,5分)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )‎ A. B.1‎ C. D. 解析:根据抛物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|+|BF|)-‎ =-=.‎ 答案:C ‎14.(2012天津,5分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=________. ‎ 解析:由题意知,抛物线的普通方程为y2=2px(p>0),焦点F(,0),准线x=-,设准线与x轴的交点为A.由抛物线定义可得|EM|=|MF|,所以△MEF是正三角形,在直角三角形EFA中,|EF|=2|FA|,即3+=2p,得p=2.‎ 答案:2‎ ‎15.(2012陕西,5分)右图是抛物线形拱桥,当水面在l时,拱顶离水面‎2米,水面宽‎4米.水位下降‎1米后,水面宽______米.‎ 解析:以抛物线的顶点为原点,对称轴为y轴建立直角坐标系,设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,所以水面宽为2.‎ 答案:2 ‎16.(2010浙江,4分)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.‎ 解析:抛物线的焦点F的坐标为(,0),线段FA的中点B的坐标为(,1),代入抛物线方程得1=2p×,‎ 解得p=,故点B的坐标为(,1),故点B到该抛物线准线的距离为+=.‎ 答案: ‎17.(2011新课标全国,12分)在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足∥,·=·,M点的轨迹为曲线C.‎ ‎(1)求C的方程;‎ ‎(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.‎ 解:(1)设M(x,y),由已知得B(x,-3),A(0,-1).‎ 所以=(-x,-1-y),=(0,-3-y),‎ ‎=(x,-2).‎ 再由题意可知(+)·=0,‎ 即(-x,-4-2y)·(x,-2)=0‎ 所以曲线C的方程为y=x2-2.‎ ‎(2)设P(x0,y0)为曲线C:y=x2-2上一点,因为y ′=x,所以l的斜率为x0.‎ 因此直线l的方程为y-y0=x0(x-x0),‎ 即x0x-2y+2y0-x=0.‎ 则O点到l的距离d=.又y0=x-2,所以 d==(+)≥2,‎ 当x0=0时取等号,所以O点到l距离的最小值为2.‎
查看更多

相关文章

您可能关注的文档