- 2021-05-07 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届北师大版高考理科数一轮复习教师用书:第三章 第2讲 第1课时 导数与函数的单调性
第2讲 导数的应用 一、知识梳理 1.函数的单调性 在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0. f′(x)≥0⇔f(x)在(a,b)上为增函数. f′(x)≤0⇔f(x)在(a,b)上为减函数. 2.函数的极值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫作函数y=f(x)的极小值点,f(a)叫作函数y=f(x)的极小值. 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫作函数y=f(x)的极大值点,f(b)叫作函数y=f(x)的极大值. 极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上是增加的,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上是减少的,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求函数y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)做比较,其中最大的一个为最大值,最小的一个为最小值. 常用结论 1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件. 2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对任意的x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零. 3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. 二、教材衍化 1.如图是函数y=f(x)的导函数y=f′(x)的图像,则下面判断正确的是( ) A.在区间(-2,1)上f(x)是增函数 B.在区间(1,3)上f(x)是减函数 C.在区间(4,5)上f(x)是增函数 D.当x=2时,f(x)取到极小值 解析:选C.在(4,5)上f′(x)>0恒成立,所以f(x)是增函数. 2.设函数f(x)=+ln x,则( ) A.x=为f(x)的极大值点 B.x=为f(x)的极小值点 C.x=2为f(x)的极大值点 D.x=2为f(x)的极小值点 解析:选D.f′(x)=-+=(x>0), 当0查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档