- 2021-05-06 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
河北省石家庄市2013届高中毕业班第一次模拟考试理科数学试题
河北省石家庄市2013届高中毕业班第一次模拟考试 理科数学试题 (时间120分钟,满分150分) 注意事项: 1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上. 2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如 需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效. 4. 考试结束后,将本试卷和答题卡一并交回. 第I卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的. 1.复数z=1-i,则对应的点所在的象限为 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2. 若集合,,则所含的元素个数为 A. O B. 1 C. 2 D. 3 3. 设随机变量服从正态分布.若P(<2)=0.8,则p(0<<1)的值为 A. 0.2 B. 0.3 C. 0.4 D. 0.6 4 已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线的方程为3x4y=0,则 该双曲线的标准方程为 A. B. C. D. 5. 执行右面的程序框图,输出的S值为 A. 1 B. 9 C. 17 D. 20 6. 已知等比数列{an},且,则a6(a3+2a6+a10))的值为 A. π2 B. 4 C. π D.-9π 7. 现釆用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出 0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数: 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为 A. 0.852 B. 0.8192 C O.8 D. 0.75 8. 巳知点(x,y)在ΔABC所包围的阴影区域内(包含边界),若B(3, )是 使得z=ax-y取得最大值的最优解,则实数a的取值范围为 A. B. C. D. 9. 若函数满足f(1)=0,则 A.f(x-2)—定是奇函数 B.f(x+1)—定是偶函数 C. f(x+3)一定是偶函数 D, f(x-3)一定是奇函数 10. 已知正三棱锥P-ABC的主视图和俯视图如图所 示,则此三棱锥的外接球的表面积为 A 4π B, 12π C. D. 11. 已知数列{an}…,依它的10项的规律,则a99+a100 的值为 A B. C. D. - 12. 已知定义域为R的奇函数f(x)的导函数为,当时,,若 ,则下列关于a,b,c的大小关系正确的是 A. a>b>c B, a>c>b C. c>b>a D. b>a>c 第II卷(非选择题,共90分) 本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空題,本大通共4小题,每小题5分,共20分. 13.过点(2,3)与圆(x-1)2+y2=1相切的直线方程为_____. 14. 如图,正方形ABCD中,EF//AB,若沿EF将正方形折成一个二面角后,AE:ED:AD=1:1:,则AF与CE所成的角的余弦值为______. 15.为举办校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分 别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须 有女生参加,則不同的推荐方案的种数为_______.(用数字作答) 16.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且 (x,y∈R),则x+y的取值范围为 _____ 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分) 如图,有两座建筑物AB和CD都在河的对岸(不知 道它们的高度,且不能到达对岸),某人想测量两 座建筑物尖顶A、C之间的距离,但只有卷尺和测 角仪两种工具.若此人在地面上选一条基线EF,用 卷尺测得EF的长度为a,并用测角仪测量了一些角度:,,,,请你用文字和公式写出计算A、C之间距离的步骤和结果. 18.(本小题满分12分) 为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果: 表l:男生上网时间与频数分布表 表2:女生上网时间与频数分布表 (I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率; (II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”? 表3:• 附: 19. (本小题满分i2分) 如图,在四棱锥P-ABCD中,PA丄平面ABCD, ,,AD=AB=1,AC 和 BD 交于O点. (I)求证:平面PBD丄平面PAC (II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-G的余弦值. 20. (本小题满分12分) 椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点. (I)若ΔABF2为正三角形,求椭圆的离心率; (II)若椭圆的离心率满足,0为坐标原点,求证:OA2+OB2查看更多