试论全国高考数学试卷分析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

试论全国高考数学试卷分析

HR Planning System Integration and Upgrading Research of ‎ ‎ A Suzhou Institution ‎2004年全国高考数学试卷分析 ‎ 2004.7‎ ‎2004年全国高考数学命题继续坚持“三个有助于”的原则,重点考查中学数学基础知识和基本方法;试卷难度的起点和梯度设置恰当;文理科对应试题难度编排搭配科学合理;适当地降低了运算量;继续保持应用性题目占有一定的比例;继续坚持对新增数学内容的倾斜;较好地处理了考查内容与呈现形式的关系;试卷的整体难度较2003年有所降低,具有较高的效度、区分度和信度.整张试卷以常规题为主,由浅入深,层次分明,既有利于广大考生得到基本分,稳定考生情绪,也有利于为高校选拔优秀学生. ‎ 一.试卷的整体评价 ‎1.试卷结构不变,注重基础知识和方法的考查 ‎(1)试卷长度、题型比例配置保持不变,与《考试说明》的规定一致.全卷共22题,选择题12个,共60分;填空题4个,共16分;解答题6个,共74分,全卷合计150分.‎ ‎(2)考查的内容面广,题目不偏不怪,回归基础,注重课本.侧重于中学数学学科的基础知识和基本方法,侧重于初等数学和高等数学衔接内容和方法的考查.‎ 从试卷所涉及到的数学知识和方法以及数学思想来看,命题坚持以中学数学的主体内容为考查的重点,以测试考生基本数学素质为目的.如有关函数、立体几何、解析几何、平面向量、导数、数列、概率等内容在卷面上占有相当大的比例,函数与方程、数形结合、分类讨论以及转化与化归的思想方法等内容均蕴含在各试题中,可以看出高考命题不回避主流知识和方法的考查. ‎ ‎2.保持新增课程内容在试卷中的比例,引导课改方向 新增数学内容:导数、概率统计、平面向量等在试卷中约40分,占整个卷面分数的26.7%,远远高出其在教学大纲中的课时分配所占比例.同时在设计试题时,保持对新增数学知识和方法考查具有一定的广度和深度,如用导数求函数的单调区间;用向量的方法表示长度和共线问题等.让学生体会新增内容在解决传统数学问题过程中的优越性,从而体现“高考支持课程改革”的命题思路.‎ ‎3.文理科试题难度设计合理,增加了相同题的分量 注意到文理科学生在数学学习上的差异,从不同层面上对文理科学生进行考查.在相同题占有比例增加的情况下,在姊妹题和不同题上适当地拉开差距.如文理第(2)题都是对数的运算问题,但文科给出的是具体的数字条件,而理科相应的条件换成了字母;再如文科第(1)题和理科的第(6)题都是考查集合的运算,但是文科是以具体的数字给出的集合,理科就是以抽象集合为背景,两者的难度不言自明;又如文理(11)姊妹题分别需要讨论2种和5种情况.再如文科(20)题是单纯的古典概型的应用题,对应理科的姊妹题(18)题是有关离散型随机变量分布列的应用题.无论是所需要分析的问题背景,还是求解问题的计算量,文理科姊妹题差距都很大,文科试题难度明显低于理科.由此可以看出文科相对于理科姊妹题更加具体直观简单.这样处理符合目前国家课程改革的大方向和中学数学教学以及学习的实际状况.‎ ‎4.保持应用题占有适当的比例,强调数学应用 今年高考题文理科各出现一小一大2个应用题,合计17分,约占总分的11.3%‎ ‎.应用题的数量和分值与去年相比有所减少,难度有所降低.应该说这和当前中学应用题教学实际以及学生的实际情况是吻合的.现在人们已经普遍认可通过设置应用题来考查学生应用数学的意识,创设新的问题情景使考生在新的情景中实现知识迁移,创造性地解决问题,更能体现考生的数学素质和能力,突出了高考的选拔功能,真正考查出考生的学习潜力.但是在高考试卷中应用题的数量、难度和分值要把握一个适当的度.今年试卷中理(11)和文(11)各是一个概率应用问题.理(18)和文(20)分别是用概率统计的方法分析热线电话占线和学生通过测验的问题.这些应用题涉及到的实际问题,背景公平,学生熟悉,难度适中.通过这些容易引起学生兴趣和关注的应用问题,可以让学生去关心周围的社会和生活的世界,培养正确的世界观和人生观.同时可以更好的实现“三个有助于”,实现“新课标”中倡导的学生创新意识和实践能力的培养,无疑会对中学数学教学改革起到良好的导向作用.‎ ‎5.降低了对运算能力的要求,侧重对思维能力的考查 本次数学试卷的数值计算量明显地得到控制.如在文理科客观试题中,计算量普遍降低,特别降低了数值计算的要求,重点考查代数式化简和变形的能力以及思维方法和计算方法.如:包括文理(13)题解不等式等计算题侧重于计算方法,只需进行简单的代数式运算就可以完成.这种变化符合当前现代教育技术逐渐进入课堂,计算机和计算器作为教学和学习工具越来越多地参与到教学和学习活动中的趋势. ‎ 定义法是把表示距离的线段或二面角的平面角放到某个三角形中求解, 但不可避免的要涉及到一些线面关系的证明.等积法是历年来高考立体几何试题考查的一个重点.向量法最大优点是避免了大量的几何论证,把逻辑推理的问题转化为代数计算问题. ‎ 二.对中学数学教学的启示 ‎ ‎ 在目前的形势下,离开高考谈教学那是一句空话.高考改革是中学数学改革的龙头,在很大程度上影响着中学推行课改和实施素质教育的进程.我们研究分析高考试卷、命题思路就是为了更好的改进中学数学教学和深化中学数学教学改革.针对高考中出现的问题,我们在教学中应该反思. ‎ ‎(1)“双基”该不该抓?今年的高考试卷已经给了我们一个明确的答复.经过前几年“轰轰烈烈”的高考改革尝试后,高考命题逐渐趋于理性化,探索在形式与内容的改革创新和相对稳定之间寻找平衡点,突出了数学的基础性和通用性.许多不重视“双基”的考生,今年很难取得高分.‎ 怎样有效的落实“双基”?一般地,对于教师和学生来说就是:时间加方法.我们提倡通过优化教师的教学方法和学生的学习方法达到减少教学和学习时间的目的,而不是相反,通过题海战术来掩盖方法上的不足.因此我们还要深入地研究“新课标”,改进教学观念和方法,倡导学生通过自主与合作学习,落实数学基础知识和方法,形成基本技能.‎ ‎(2)“新课标”与“新教材”对高考的影响.“高考要支持课改”这是毫无疑问的,但是怎样支持?教师怎样应对?从2004年的高考试卷中可以看到新增数学内容的大量应用.如平面向量、空间向量、概率统计、导数、随机变量等内容.需要注意的是“新课标”引入了“新内容”其意义不仅在于教学内容的更新,更重要的是引入了新的思维方法,可以有效地处理和解决许多数学问题和实际应用问题.今年我省还将在全国率先使用“新课标”下的试验教材,对于新教材的理解和挖掘也需要有一个新的认识过程.我们要研究“新课标”,用好新教材,争取走在教改试验的前列.‎ ‎(3)通过应用题学习培养学生的创新意识和实践能力.以往高考总是围绕知识点来设计题目,我们中学教学也过分的强调解题技巧.而现在高考改革的重点是考查学生的数学能力和素质,考查其分析问题和解决问题的能力.试题往往从学生身边熟悉的问题,如社会热点、重大事件、环境问题、新科技、新材料、生活常识等问题切入.今年是由一个接听电话(理)和学生参加测验(文)的日常小事编制的应用题,目的是引导学生在学习的同时,也要关注社会和身边周围发生的事情,要试着用数学的方法去研究和解决这些问题.因此教学中要把培养学生的创新意识和实践能力作为基本目标,鼓励学生独立思考,增强用数学的意识,逐步学会用已有的数学知识去探索新的数学问题,学会将实际问题抽象转化为数学问题,并加以解决.‎ ‎(4)重视数学语言的教学.语言是思维的载体,是思维的外部表现形式.研究数学问题,不仅要准确、深刻地理解,更重要的是还能够正确、完整地表达出来.许多题目学生做不出来,很多情况下是因为看不懂题,特别是对于应用题和立体几何题.前者涉及到生活语言和数学语言的转换,后者涉及到图形语言和符号语言的转换.学生不能很快的理解题意,提取有用的信息,也就不能进行数学语言之间的准确、流畅的转换.因此,熟悉数学语言,包括文字语言、符号语言和图表语言等,是阅读、理解和表述数学问题的基础.只有具备熟练的表述能力,才能有效的进行数学交流.在教学中要重视对学生口头和书面表述(包括作图)能力的培养,以求达到表述的准确性、逻辑性、完整性和流畅性.‎ ‎(5)思维能力和学习方式的培养是中学数学教学不可推卸的责任.具有良好的思维能力,特别是向其他学科领域进行迁移的能力.虽然今年理科高考试题难度偏低,但是,多年来作为选拔性考试的高考数学试题在这方面已得到充分的印证,仍需要充分的重视.如“多题把关”以及“入口宽,方法多,过程长,出口难” 的各种解答题,给思维能力强的学生留下了充分施展才能的空间.数学能力和素质是在知识传授和学习过程中逐渐得到培养和发展的.复习阶段要在掌握教材的基础上把各个局部知识按照一定的观点和方法组织成整体(如专题复习),形成知识体系.要重视知识形成过程的教学,特别是数学定理、公式的推导过程和例题的求解过程.基本的数学思想和方法都是在这个过程中形成和发展的,数学能力也是在这个过程中得到培养和锻炼的.‎ 今年考生普遍感觉题目不难,但是每一个题都做对、做好,步骤完整不丢分却不容易.因此,我们在教学传授知识的同时,更应该注重培养学生形成一个良好的学习方式.具有一个良好的学习方式可能会让学生受益终生,不能让学生闭门“读死书”、“死读书”,学习也不能仅仅局限在课堂和教材上,要努力使学生学会怎样学习,为其终身学习打下基础.‎
查看更多

相关文章

您可能关注的文档